a
    h!                     @   s   d dl mZmZmZmZ ddlmZmZmZm	Z	m
Z
 ddlmZmZ e rVddlmZ e rtd dlZddlmZmZ erd d	lmZ e	eZeed
dG dd deZdS )    )TYPE_CHECKINGAnyUnionoverload   )add_end_docstringsis_torch_availableis_vision_availableloggingrequires_backends   )Pipelinebuild_pipeline_init_args)
load_imageN)(MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES)ImageT)Zhas_image_processorc                	       s  e Zd ZdZdZdZdZdZ fddZdd Z	e
eed	f eeeeeef  d
ddZe
eee ed	 f eeeeeeef   d
ddZeeeeef  eeeeef   f d fddZdddZdd ZdddZdeeef dddZ  ZS )ObjectDetectionPipelinea  
    Object detection pipeline using any `AutoModelForObjectDetection`. This pipeline predicts bounding boxes of objects
    and their classes.

    Example:

    ```python
    >>> from transformers import pipeline

    >>> detector = pipeline(model="facebook/detr-resnet-50")
    >>> detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
    [{'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}, {'score': 0.999, 'label': 'bird', 'box': {'xmin': 398, 'ymin': 105, 'xmax': 767, 'ymax': 507}}]

    >>> # x, y  are expressed relative to the top left hand corner.
    ```

    Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)

    This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier:
    `"object-detection"`.

    See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=object-detection).
    FTNc                    sX   t  j|i | | jdkr.td| j dt| d t }|t	 | 
| d S )NtfzThe z is only available in PyTorch.Zvision)super__init__	framework
ValueError	__class__r   r   copyupdater   Zcheck_model_type)selfargskwargsmappingr    c/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/pipelines/object_detection.pyr   8   s    


z ObjectDetectionPipeline.__init__c                 K   s:   i }d|v r|d |d< i }d|v r0|d |d< |i |fS )Ntimeout	thresholdr!   )r   r   Zpreprocess_paramsZpostprocess_kwargsr!   r!   r"   _sanitize_parametersC   s    z,ObjectDetectionPipeline._sanitize_parameterszImage.Image)imager   r   returnc                 O   s   d S Nr!   r   r&   r   r   r!   r!   r"   __call__L   s    z ObjectDetectionPipeline.__call__c                 O   s   d S r(   r!   r)   r!   r!   r"   r*   O   s    )r'   c                    s0   d|v rd|vr| d|d< t j|i |S )ai  
        Detect objects (bounding boxes & classes) in the image(s) passed as inputs.

        Args:
            inputs (`str`, `list[str]`, `PIL.Image` or `list[PIL.Image]`):
                The pipeline handles three types of images:

                - A string containing an HTTP(S) link pointing to an image
                - A string containing a local path to an image
                - An image loaded in PIL directly

                The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the
                same format: all as HTTP(S) links, all as local paths, or all as PIL images.
            threshold (`float`, *optional*, defaults to 0.5):
                The probability necessary to make a prediction.
            timeout (`float`, *optional*, defaults to None):
                The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
                the call may block forever.

        Return:
            A list of dictionaries or a list of list of dictionaries containing the result. If the input is a single
            image, will return a list of dictionaries, if the input is a list of several images, will return a list of
            list of dictionaries corresponding to each image.

            The dictionaries contain the following keys:

            - **label** (`str`) -- The class label identified by the model.
            - **score** (`float`) -- The score attributed by the model for that label.
            - **box** (`list[dict[str, int]]`) -- The bounding box of detected object in image's original size.
        imagesinputs)popr   r*   )r   r   r   r    r!   r"   r*   T   s     c                 C   st   t ||d}t|j|jgg}| j|gdd}| jdkrF|| j}| j	d urh| j	|d |d dd}||d< |S )N)r#   pt)r+   return_tensorswordsboxes)textr1   r/   target_size)
r   torchZ	IntTensorheightwidthimage_processorr   toZdtype	tokenizer)r   r&   r#   r3   r,   r!   r!   r"   
preprocessx   s    

z"ObjectDetectionPipeline.preprocessc                 C   sF   | d}| jf i |}|d|i|}| jd urB|d |d< |S )Nr3   bbox)r-   modelr   r9   )r   Zmodel_inputsr3   outputsmodel_outputsr!   r!   r"   _forward   s    

z ObjectDetectionPipeline._forward      ?c                    sJ  |d }j d ur|d  \  fdd|d djddjdd\}}fdd	| D }fd
d	|d dD }g dfdd	t| ||D }nj||}	|	d }
|
d }|
d }|
d }| |
d< fdd	|D |
d< fdd	|D |
d< g dfdd	t|
d |
d |
d D }|S )Nr3   r   c              
      sH    t| d  d  | d  d | d  d  | d  d gS )Nr   i  r   r      )_get_bounding_boxr4   ZTensor)r;   )r5   r   r6   r!   r"   unnormalize   s    z8ObjectDetectionPipeline.postprocess.<locals>.unnormalizeZlogits)dimc                    s   g | ]} j jj| qS r!   )r<   configid2label).0Z
predictionr   r!   r"   
<listcomp>       z7ObjectDetectionPipeline.postprocess.<locals>.<listcomp>c                    s   g | ]} |qS r!   r!   )rH   r;   )rC   r!   r"   rJ      rK   r;   )Zscorelabelboxc                    s&   g | ]}|d  krt t |qS )r   dictziprH   vals)keysr$   r!   r"   rJ      rK   scoreslabelsr1   c                    s   g | ]} j jj|  qS r!   )r<   rF   rG   item)rH   rL   rI   r!   r"   rJ      rK   c                    s   g | ]}  |qS r!   )rB   )rH   rM   rI   r!   r"   rJ      rK   c                    s   g | ]}t t |qS r!   rN   rQ   )rS   r!   r"   rJ      s   )r9   tolistZsqueezeZsoftmaxmaxrP   r7   Zpost_process_object_detection)r   r>   r$   r3   rT   classesrU   r1   
annotationZraw_annotationsZraw_annotationr!   )r5   rS   r   r$   rC   r6   r"   postprocess   s,    
""
z#ObjectDetectionPipeline.postprocessztorch.Tensor)rM   r'   c                 C   s8   | j dkrtd|  \}}}}||||d}|S )a%  
        Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... }

        Args:
            box (`torch.Tensor`): Tensor containing the coordinates in corners format.

        Returns:
            bbox (`dict[str, int]`): Dict containing the coordinates in corners format.
        r.   z9The ObjectDetectionPipeline is only available in PyTorch.)xminyminxmaxymax)r   r   intrW   )r   rM   r\   r]   r^   r_   r;   r!   r!   r"   rB      s    

z)ObjectDetectionPipeline._get_bounding_box)N)r@   )__name__
__module____qualname____doc__Z_load_processorZ_load_image_processorZ_load_feature_extractorZ_load_tokenizerr   r%   r   r   strr   listrO   r*   r:   r?   r[   r`   rB   __classcell__r!   r!   r    r"   r      s$   	*6$

-r   )typingr   r   r   r   utilsr   r   r	   r
   r   baser   r   Zimage_utilsr   r4   Zmodels.auto.modeling_autor   r   ZPILr   Z
get_loggerra   loggerr   r!   r!   r!   r"   <module>   s   
