a
    h/2                     @   s   d Z ddlmZ ddlmZ ddlmZmZ e r`ddlm	Z	m
Z
mZmZmZmZmZmZ dZnRddlmZ ed	 Z	ed
 Z
ed Zed Zed Zed ZeeedddZdZeeZG dd deZdgZdS )zxLSTM configuration.    )Optional   )PretrainedConfig)is_xlstm_availablelogging)BackendModeTypeChunkwiseKernelType	DtypeTypeSequenceKernelTypeStepKernelTypeWeightModeTyperound_up_to_next_multiple_ofxLSTMLargeConfigT)Literal)trainZtrain_with_padding	inference)chunkwise--native_autogradzparallel--native_autograd)float32bfloat16Zfloat16native_sequence__nativenative)singleZfused)xmultiple_ofreturnc                 C   s   t | | d | | S )z0Rounds up x to the next multiple of multiple_of.   )int)r   r    r   i/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/xlstm/configuration_xlstm.pyr   2   s    r   Fc                "       s   e Zd ZdZdZd)eeee ee ee eeeeeeeee	e
eeeeeeeeeeeeeeeeed  fddZedd  Zed!d" Zed#d$ Zed%d& Zd'd( Z  ZS )*xLSTMConfiga  
    This is the configuration class to store the configuration of a [`xLSTM`]. It is used to instantiate a xLSTM
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the xLSTM-7b [NX-AI/xLSTM-7b](https://huggingface.co/NX-AI/xLSTM-7b) model.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (int, optional, *optional*, defaults to 50304):
            Vocabulary size of the xLSTM model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`xLSTMModel`]. Defaults to the GPT2-NeoX tokenizer size.
        hidden_size (int, optional, *optional*, defaults to 4096):
            Dimensionality of the embeddings or hidden states.
        embedding_dim (int, optional, *optional*, defaults to 4096):
            Dimensionality of the embeddings or hidden states, use hidde_size if None.
        num_hidden_layers (int, optional, *optional*, defaults to 32):
            Number of blocks of the xLSTM model.
        num_blocks (int, optional, *optional*, defaults to 32):
            Number of blocks of the xLSTM model, use num_hidden_layers if None.
        num_heads (int, optional, *optional*, defaults to 8):
            Number of heads for the xLSTM Layer/Cell.
        use_bias (bool, optional, *optional*, defaults to `False`):
            Whether to use biases in the xLSTM model.
        norm_reduction_force_float32 (bool, optional, *optional*, defaults to `True`):
            Whether to force the float32 norm reduction op to be done in fp32 precision.
        tie_word_embeddings (bool, optional, *optional*, defaults to `False`):
            Whether to tie word embeddings to the lm head weights.
        add_out_norm (bool, optional, *optional*, defaults to `True`):
            Whether to add an output norm after the blocks before the LMHead.
        norm_eps (float, optional, *optional*, defaults to 1e-06):
            Norm eps for RMSNorm and Layer Norm.
        qk_dim_factor (float, optional, *optional*, defaults to 0.5):
            Scale factor for the query and key dimension.
        v_dim_factor (float, optional, *optional*, defaults to 1.0):
            Scale factor for the value dimension.
        chunkwise_kernel (ChunkwiseKernelType, optional, *optional*, defaults to `"chunkwise--native_autograd"`):
            Kernel type for chunkwise processing mode.
        sequence_kernel (SequenceKernelType, optional, *optional*, defaults to `"native_sequence__native"`):
            Kernel type for sequence processing mode.
        step_kernel (StepKernelType, optional, *optional*, defaults to `"native"`):
            Kernel type for step processing mode.
        mode (BackendModeType, optional, *optional*, defaults to `"inference"`):
            Operation mode (inference is needed for generation).
        chunk_size (int, optional, *optional*, defaults to 64):
            Internal chunk size.
        return_last_states (bool, optional, *optional*, defaults to `True`):
            If to return the last states / cache internally. Needed as True for generation.
        autocast_kernel_dtype (DtypeType, optional, *optional*, defaults to `"bfloat16"`):
            Kernel dtype for the states.
        eps (float, optional, *optional*, defaults to 1e-06):
            Epsilon for the mLSTM cell post norm.
        inference_state_dtype (DtypeType, optional, *optional*, defaults to `"float32"`):
            Kernel dtype for states in inference.
        ffn_proj_factor (float, optional, *optional*, defaults to 2.667):
            Size factor of the post-up projection gated Feed Forward network.
        ffn_round_up_to_multiple_of (int, optional, *optional*, defaults to 64):
            Size factor round value of the post-up projection gated Feed Forward network.
        gate_soft_cap (float, optional, *optional*, defaults to 15.0):
            Gate soft cap scale.
        output_logit_soft_cap (float, optional, *optional*, defaults to 30.0):
            Output logit soft cap scale.
        weight_mode (`Literal`, *optional*, defaults to `"single"`):
            Whether parallel linear layers are separated or fused (single).
        use_cache (bool, optional, *optional*, defaults to `True`):
            Whether to use the cache (xLSTMCache).
        pad_token_id (int, optional, *optional*, defaults to 1):
            Pad token id needed for generation.
        bos_token_id (int, optional, *optional*, defaults to 0):
            BOS token id needed for generation.
        eos_token_id (int, optional, *optional*, defaults to 2):
            EOS token id needed for generation.
        max_inference_chunksize (int, optional, *optional*, defaults to 16384):
            Limit the chunk size for inference to save memory.

    Example:

    ```python
    >>> from transformers import xLSTMConfig, xLSTMModel

    >>> # Initializing a xLSTM configuration
    >>> configuration = xLSTMConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = xLSTMModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zxlstm     N       FTư>      ?      ?r   r   r   r   @   r   r   tV@      .@      >@r   r   r       @  ) 
vocab_sizehidden_sizeembedding_dimnum_hidden_layers
num_blocks	num_headsuse_biasnorm_reduction_force_float32tie_word_embeddingsadd_out_normnorm_epsqk_dim_factorv_dim_factorchunkwise_kernelsequence_kernelstep_kernelmode
chunk_sizereturn_last_statesautocast_kernel_dtypeepsinference_state_dtypeffn_proj_factorffn_round_up_to_multiple_ofgate_soft_capoutput_logit_soft_capweight_mode	use_cachepad_token_idbos_token_ideos_token_idmax_inference_chunksizec!           "         s  || _ |d ur|n|| _|d ur$|n|| _|d ur6|n|| _|d urH|n|| _|| _|| _|	| _|
| _|| _	|| _
|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _| | _t  j!f ||||	d|! d S )N)rJ   rK   rI   r5   )"r-   r.   r/   r0   r1   r2   r3   r5   r6   r7   r4   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   rL   super__init__)"selfr-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   rL   kwargs	__class__r   r   rN      sP    ,zxLSTMConfig.__init__c                 C   s   t | j| j ddS Nr'   )r   )r   r.   r8   rO   r   r   r   qk_dim   s    
zxLSTMConfig.qk_dimc                 C   s   t | j| j ddS rS   )r   r.   r9   rT   r   r   r   v_dim   s    
zxLSTMConfig.v_dimc                 C   s   | j | j S N)rU   r2   rT   r   r   r   qk_head_dim  s    zxLSTMConfig.qk_head_dimc                 C   s   | j | j S rW   )rV   r2   rT   r   r   r   
v_head_dim  s    zxLSTMConfig.v_head_dimc                 C   st   t rlt| j| j| j| j| j| j| j| j	| j
| j| j| j| j| j| j| j| j| j| j| j| j| j| j| jdS | S d S )N)r-   r/   r1   r2   r3   r6   r7   r4   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   )external_xlstmr   r-   r.   r0   r2   r3   r6   r7   r4   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rT   r   r   r   to_xlstm_block_config
  s8    z!xLSTMConfig.to_xlstm_block_config) r    r!   Nr"   Nr#   FTFTr$   r%   r&   r   r   r   r   r'   Tr   r$   r   r(   r'   r)   r*   r   Tr   r   r+   r,   )__name__
__module____qualname____doc__Z
model_typer   r   boolfloatr   r
   r   r   r	   r   rN   propertyrU   rV   rX   rY   r[   __classcell__r   r   rQ   r   r   <   s   [                                Z



r   N)r_   typingr   Zconfiguration_utilsr   utilsr   r   Zxlstm.xlstm_large.modelr   r   r	   r
   r   r   r   r   rZ   r   r   Z
get_loggerr\   loggerr   __all__r   r   r   r   <module>   s*   (
 s