a
    h!                     @   s   d Z ddlmZmZ ddlmZ ddlmZ ddlm	Z	 ddl
mZmZmZmZ ddlmZmZ eeZG d	d
 d
eddZG dd deddZG dd deZdgZdS )z
Processor class for UDOP.
    )OptionalUnion)logging   )BatchFeature)
ImageInput)ProcessingKwargsProcessorMixin
TextKwargsUnpack)PreTokenizedInput	TextInputc                   @   sR   e Zd ZU eeee eee  f  ed< eeee  eeee   f ed< dS )UdopTextKwargsword_labelsboxesN)__name__
__module____qualname__r   r   listint__annotations__ r   r   d/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/udop/processing_udop.pyr       s   
 r   F)totalc                
   @   s4   e Zd ZU eed< dddddddddd	i dZdS )UdopProcessorKwargstext_kwargsTFr   )	Zadd_special_tokenspaddingZ
truncationZstridereturn_overflowing_tokensZreturn_special_tokens_maskreturn_offsets_mappingZreturn_lengthverbose)r   images_kwargsN)r   r   r   r   r   	_defaultsr   r   r   r   r   %   s   
r   c                       sv   e Zd ZdZddgZdZdZ fddZdee	 e
eeee ee f ee ed	d
dZdd Zedd Z  ZS )UdopProcessora  
    Constructs a UDOP processor which combines a LayoutLMv3 image processor and a UDOP tokenizer into a single processor.

    [`UdopProcessor`] offers all the functionalities you need to prepare data for the model.

    It first uses [`LayoutLMv3ImageProcessor`] to resize, rescale and normalize document images, and optionally applies OCR
    to get words and normalized bounding boxes. These are then provided to [`UdopTokenizer`] or [`UdopTokenizerFast`],
    which turns the words and bounding boxes into token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`.
    Optionally, one can provide integer `word_labels`, which are turned into token-level `labels` for token
    classification tasks (such as FUNSD, CORD).

    Additionally, it also supports passing `text_target` and `text_pair_target` to the tokenizer, which can be used to
    prepare labels for language modeling tasks.

    Args:
        image_processor (`LayoutLMv3ImageProcessor`):
            An instance of [`LayoutLMv3ImageProcessor`]. The image processor is a required input.
        tokenizer (`UdopTokenizer` or `UdopTokenizerFast`):
            An instance of [`UdopTokenizer`] or [`UdopTokenizerFast`]. The tokenizer is a required input.
    image_processor	tokenizerZLayoutLMv3ImageProcessor)ZUdopTokenizerZUdopTokenizerFastc                    s   t  || d S )N)super__init__)selfr#   r$   	__class__r   r   r&   Q   s    zUdopProcessor.__init__N)imagestextkwargsreturnc                 K   s  | j tfd| jji|}|d dd}|d dd}|d dd}	|d dd}
|d d	d}|d d
d}| jjr|durtd| jjr|durtd|
r|std|dur| jf i |d S | jf d|i|d }|dd}|dd}|d d
d |d dd |	|d d< |dur@|n||d d< ||d d< |dur| jjr|	du rt	|t
r|g}||d d< | jf d|dur|n|i|d }|
du r| |d |d |d< || |S dS )a~  
        This method first forwards the `images` argument to [`~UdopImageProcessor.__call__`]. In case
        [`UdopImageProcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and
        bounding boxes along with the additional arguments to [`~UdopTokenizer.__call__`] and returns the output,
        together with the prepared `pixel_values`. In case [`UdopImageProcessor`] was initialized with `apply_ocr` set
        to `False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the
        additional arguments to [`~UdopTokenizer.__call__`] and returns the output, together with the prepared
        `pixel_values`.

        Alternatively, one can pass `text_target` and `text_pair_target` to prepare the targets of UDOP.

        Please refer to the docstring of the above two methods for more information.
        Ztokenizer_init_kwargsr   r   Nr   	text_pairr   Fr   text_targetzdYou cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.zaYou cannot provide word labels if you initialized the image processor with apply_ocr set to True.zKYou cannot return overflowing tokens without returning the offsets mapping.r*   r    wordsZtext_pair_targetr+   TZpixel_valuesoverflow_to_sample_mapping)Z_merge_kwargsr   r$   Zinit_kwargspopgetr#   Z	apply_ocr
ValueError
isinstancestrget_overflowing_imagesupdate)r'   r*   r+   ZaudioZvideosr,   Zoutput_kwargsr   r   r.   r   r   r/   featuresZfeatures_wordsZfeatures_boxesZencoded_inputsr   r   r   __call__T   sd    

zUdopProcessor.__call__c                 C   sL   g }|D ]}| ||  qt|t|krHtdt| dt| |S )Nz`Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got z and )appendlenr4   )r'   r*   r1   Zimages_with_overflowZ
sample_idxr   r   r   r7      s    z$UdopProcessor.get_overflowing_imagesc                 C   s"   | j j}| jj}t|| dg S )NZbbox)r$   model_input_namesr#   r   )r'   Ztokenizer_input_namesZimage_processor_input_namesr   r   r   r=      s    zUdopProcessor.model_input_names)NNNN)r   r   r   __doc__
attributesZimage_processor_classZtokenizer_classr&   r   r   r   r   r   r   r   r   r   r:   r7   propertyr=   __classcell__r   r   r(   r   r"   7   s$       Xr"   N)r>   typingr   r   Ztransformersr   Zimage_processing_utilsr   Zimage_utilsr   Zprocessing_utilsr   r	   r
   r   Ztokenization_utils_baser   r   Z
get_loggerr   loggerr   r   r"   __all__r   r   r   r   <module>   s   
 