a
    h                     @   sj   d Z ddlmZ ddlmZ ddlmZ ddlmZ e	e
ZG dd deZG d	d
 d
eZdd
gZdS )zT5 model configuration    )Mapping   )PretrainedConfig)OnnxSeq2SeqConfigWithPast)loggingc                       s:   e Zd ZdZdZdgZdddddZd fdd	Z  ZS )T5Configa  
    This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to
    instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the T5
    [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Arguments:
        vocab_size (`int`, *optional*, defaults to 32128):
            Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`].
        d_model (`int`, *optional*, defaults to 512):
            Size of the encoder layers and the pooler layer.
        d_kv (`int`, *optional*, defaults to 64):
            Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
            be defined as `num_heads * d_kv`.
        d_ff (`int`, *optional*, defaults to 2048):
            Size of the intermediate feed forward layer in each `T5Block`.
        num_layers (`int`, *optional*, defaults to 6):
            Number of hidden layers in the Transformer encoder.
        num_decoder_layers (`int`, *optional*):
            Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
        num_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        relative_attention_num_buckets (`int`, *optional*, defaults to 32):
            The number of buckets to use for each attention layer.
        relative_attention_max_distance (`int`, *optional*, defaults to 128):
            The maximum distance of the longer sequences for the bucket separation.
        dropout_rate (`float`, *optional*, defaults to 0.1):
            The ratio for all dropout layers.
        classifier_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for classifier.
        layer_norm_eps (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        initializer_factor (`float`, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
            Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the
            `"gated-gelu"` feed forward projection. Original T5 uses `"relu"`.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
    Zt5Zpast_key_valuesd_model	num_heads
num_layersd_kv)Zhidden_sizeZnum_attention_headsZnum_hidden_layersZhead_dim}     @         N          皙?ư>      ?reluTr              c                    s   || _ || _|| _|| _|| _|d ur*|n| j| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _| jd}|d | _|d dk| _t|dkr|d dkst|dkrtd| d|d	krd
| _t jf |||d| d S )N-r   Zgatedr      z`feed_forward_proj`: z is not a valid activation function of the dense layer. Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. 'gated-gelu' or 'relu'z
gated-geluZgelu_new)pad_token_ideos_token_idis_encoder_decoder)
vocab_sizer   r   d_ffr
   num_decoder_layersr	   relative_attention_num_bucketsrelative_attention_max_distancedropout_rateclassifier_dropoutlayer_norm_epsiloninitializer_factorfeed_forward_proj	use_cachesplitZdense_act_fnZis_gated_actlen
ValueErrorsuper__init__)selfr    r   r   r!   r
   r"   r	   r#   r$   r%   r'   r(   r)   r   r*   r   r   r&   kwargsZact_info	__class__ c/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/t5/configuration_t5.pyr/   S   s@    
$
zT5Config.__init__)r   r   r   r   r   Nr   r   r   r   r   r   r   TTr   r   r   )	__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferenceZattribute_mapr/   __classcell__r4   r4   r2   r5   r      s6   .	                  r   c                   @   s@   e Zd Zeeeeeef f dddZeedddZdS )T5OnnxConfig)returnc                 C   sx   ddddddd}| j rDd|d d< ddi|d	< dd
d|d< nddd|d	< ddd|d< | j rt| j|dd |S )NbatchZencoder_sequence)r   r   )Z	input_idsattention_maskz past_encoder_sequence + sequencer>   r   r   Zdecoder_input_idsz past_decoder_sequence + sequenceZdecoder_attention_maskZdecoder_sequenceinputs)	direction)Zuse_pastZfill_with_past_key_values_)r0   Zcommon_inputsr4   r4   r5   r?      s    zT5OnnxConfig.inputsc                 C   s   dS )N   r4   )r0   r4   r4   r5   default_onnx_opset   s    zT5OnnxConfig.default_onnx_opsetN)	r6   r7   r8   propertyr   strintr?   rB   r4   r4   r4   r5   r;      s    r;   N)r9   collections.abcr   Zconfiguration_utilsr   Zonnxr   utilsr   Z
get_loggerr6   loggerr   r;   __all__r4   r4   r4   r5   <module>   s   
w