a
    h
@                     @   sZ  d dl mZmZ d dlZddlmZ ddlmZmZ ddl	m
Z
 ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZmZmZmZmZmZmZmZmZ ddlm Z  e!e"Z#G dd deZ$G dd deZ%G dd deZ&G dd deZ'G dd de Z(G dd deZ)G dd deZ*G dd deZ+G dd  d eZ,g d!Z-dS )"    )CallableOptionalN   )Cache)PretrainedConfiglayer_type_validation)FlashAttentionKwargs)rope_config_validation)ALL_ATTENTION_FUNCTIONS)Unpack)logging)deprecate_kwarg   )	LlamaAttentionLlamaDecoderLayerLlamaForCausalLMLlamaForQuestionAnsweringLlamaForSequenceClassificationLlamaForTokenClassificationLlamaPreTrainedModelapply_rotary_pos_embeager_attention_forward)
Qwen2Modelc                       sf   e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZd  fdd	Z  Z	S )!SmolLM3Configa  
    This is the configuration class to store the configuration of a [`SmolLM3Model`]. It is used to instantiate a
    SmolLM3 model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the SmolLM3 3B.
    e.g. [HuggingFaceTB/SmolLM3-3B](https://huggingface.co/HuggingFaceTB/SmolLM3-3B)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 128256):
            Vocabulary size of the SmolLM3 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`SmolLM3Model`]
        hidden_size (`int`, *optional*, defaults to 2048):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 36):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 4):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `16`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 32768):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 128004):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 128000):
            The id of the beginning of sentence token.
        eos_token_id (`int`, *optional*, defaults to 128001):
            The id of the end of sentence token.
        rope_theta (`float`, *optional*, defaults to 2000000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        use_sliding_window (`bool`, *optional*, defaults to `False`):
            Whether to use sliding window attention.
        sliding_window (`int`, *optional*):
            Sliding window attention (SWA) window size. If not specified, will default to `None`.
        no_rope_layers (`List[int]`, *optional*):
            List with at least the same length as the number of layers in the model.
            A `1` at an index position indicates that the corresponding layer will use RoPE,
            while a `0` indicates that it's a NoPE layer.
        no_rope_layer_interval (`int`, *optional*, defaults to 4):
            If `no_rope_layers` is `None`, it will be created using a NoPE layer every
            `no_rope_layer_interval` layers.
        layer_types (`list`, *optional*):
            Attention pattern for each layer. Automatically computed based on sliding window and NoPE settings.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import SmolLM3Model, SmolLM3Config

    >>> # Initializing a SmolLM3 style configuration
    >>> configuration = SmolLM3Config()

    >>> # Initializing a model from the SmolLM3 style configuration
    >>> model = SmolLM3Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zsmollm3past_key_valuesZcolwiseZrowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_projZ	input_idsZinputs_embedshidden_statesattention_mask)Zembed_tokensZlayersZnorm      +  $         silu   {Gz?ư>T        >ANF        c                    sV  t  jf |||d| || _|| _|| _|| _|| _|| _|| _|| _	|| _
|d u r\|}|| _|| _|	| _|
| _|| _|| _|| _|| _|| _|d u r fddt|D | _n|| _ | _|d u rg }t|D ]:}| j| }|r|d ur|s|d q|d q|| _t| j | jd urJd| jv rJ| jd | jd< t|  d S )N)pad_token_idbos_token_ideos_token_idc                    s    g | ]}t |d    dkqS )   r   )int).0	layer_idxno_rope_layer_interval g/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/smollm3/modular_smollm3.py
<listcomp>   s   z*SmolLM3Config.__init__.<locals>.<listcomp>sliding_attentionZfull_attentiontypeZ	rope_type)super__init__
vocab_sizemax_position_embeddingsmlp_biashidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsuse_sliding_windowsliding_windownum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_biasattention_dropoutrangeno_rope_layersr4   appendlayer_typesr   r	   )selfr<   r?   r@   rA   rB   rE   rF   r=   rG   rH   rI   r,   r-   r.   rJ   rK   rC   rD   rO   r4   rQ   rL   rM   r>   kwargsr2   Zhas_rope	__class__r3   r6   r;      sZ    




zSmolLM3Config.__init__)r   r   r   r    r!   r"   r#   r$   r%   r&   Tr'   r(   r)   r*   NFNNr"   NFr+   F)
__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferenceZbase_model_tp_planZbase_model_pp_planr;   __classcell__r5   r5   rT   r6   r   -   sP   s


                        r   c                       s   e Zd Zeed fddZedddddeje	ejejf e
ej e
e e
ej ee e	eje
ej f d	d
dZ  ZS )SmolLM3Attentionconfigr2   c                    s>   t  || |j| | _|jr4|j| dkr4|jnd | _d S )Nr8   )r:   r;   rO   use_roperC   rQ   rD   rR   r]   r2   rT   r5   r6   r;     s    zSmolLM3Attention.__init__Zpast_key_valuer   z4.58)new_nameversionN)r   position_embeddingsr   r   cache_positionrS   returnc                 K   s*  |j d d }g |d| jR }| ||dd}	| ||dd}
| ||dd}| jr|\}}t|	|
||\}	}
|d urd|i}|	|
|| j
|\}
}t}| jjdkrt| jj }|| |	|
||f| jsdn| j| j| jd|\}}|jg |dR   }| |}||fS )Nr/   r   rc   eagerr+   )ZdropoutscalingrD   )shapeZhead_dimZq_projviewZ	transposeZk_projZv_projr^   r   updater2   r   r]   Z_attn_implementationr
   ZtrainingrM   rg   rD   Zreshape
contiguousZo_proj)rR   r   rb   r   r   rc   rS   Zinput_shapeZhidden_shapeZquery_statesZ
key_statesZvalue_statescossinZcache_kwargsZattention_interfaceZattn_outputZattn_weightsr5   r5   r6   forward  s<    
	

zSmolLM3Attention.forward)NN)rV   rW   rX   r   r0   r;   r   torchZTensortupler   r   Z
LongTensorr   r   rn   rZ   r5   r5   rT   r6   r[   
  s   
  r[   c                       s$   e Zd Zeed fddZ  ZS )SmolLM3DecoderLayerr\   c                    s   t  || |j| | _d S )N)r:   r;   rQ   Zattention_typer_   rT   r5   r6   r;   D  s    zSmolLM3DecoderLayer.__init__)rV   rW   rX   r   r0   r;   rZ   r5   r5   rT   r6   rq   C  s   rq   c                   @   s   e Zd ZdS )SmolLM3PreTrainedModelNrV   rW   rX   r5   r5   r5   r6   rr   I  s   rr   c                   @   s   e Zd ZdS )SmolLM3ModelNrs   r5   r5   r5   r6   rt   M  s   rt   c                   @   s   e Zd ZdS )SmolLM3ForCausalLMNrs   r5   r5   r5   r6   ru   Q  s   ru   c                   @   s   e Zd ZdS ) SmolLM3ForSequenceClassificationNrs   r5   r5   r5   r6   rv   U  s   rv   c                   @   s   e Zd ZdS )SmolLM3ForTokenClassificationNrs   r5   r5   r5   r6   rw   Y  s   rw   c                   @   s   e Zd ZdS )SmolLM3ForQuestionAnsweringNrs   r5   r5   r5   r6   rx   ]  s   rx   )r   rr   rt   ru   rv   rw   rx   ).typingr   r   ro   Zcache_utilsr   Zconfiguration_utilsr   r   Zmodeling_flash_attention_utilsr   Zmodeling_rope_utilsr	   Zmodeling_utilsr
   Zprocessing_utilsr   utilsr   Zutils.deprecationr   Zllama.modeling_llamar   r   r   r   r   r   r   r   r   Zqwen2.modeling_qwen2r   Z
get_loggerrV   loggerr   r[   rq   rr   rt   ru   rv   rw   rx   __all__r5   r5   r5   r6   <module>   s.   ,
 ^9