a
    hp,                     @   sP   d Z ddlmZmZ ddlmZ ddlmZ ee	Z
G dd deZdgZdS )zQwen2 model configuration   )PretrainedConfiglayer_type_validation)rope_config_validation)loggingc                       sf   e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZd fdd	Z  Z	S )Qwen2Configag  
    This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
    Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of
    Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 151936):
            Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Qwen2Model`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 22016):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 32):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 32768):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        use_sliding_window (`bool`, *optional*, defaults to `False`):
            Whether to use sliding window attention.
        sliding_window (`int`, *optional*, defaults to 4096):
            Sliding window attention (SWA) window size. If not specified, will default to `4096`.
        max_window_layers (`int`, *optional*, defaults to 28):
            The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
            additional layer afterwards will use SWA (Sliding Window Attention).
        layer_types (`list`, *optional*):
            Attention pattern for each layer.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import Qwen2Model, Qwen2Config

    >>> # Initializing a Qwen2 style configuration
    >>> configuration = Qwen2Config()

    >>> # Initializing a model from the Qwen2-7B style configuration
    >>> model = Qwen2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zqwen2Zpast_key_valuesZcolwiseZrowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_projZ	input_idsZinputs_embedsZhidden_statesZattention_mask)Zembed_tokensZlayersZnormQ     V      silu   {Gz?ư>TF     @N           c                    s   | _ | _| _| _| _| _| _ jr4|nd  _| _|d u rL|}| _	| _
|	 _|
 _| _| _| _| _ jd urd jv r jd  jd< t  | _ jd u r҇ fddt jD  _t j t jf d|i| d S )NtypeZ	rope_typec                    s(   g | ] } j d ur | jkr dndqS )NZsliding_attentionZfull_attention)sliding_windowmax_window_layers).0iself i/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/qwen2/configuration_qwen2.py
<listcomp>   s   z(Qwen2Config.__init__.<locals>.<listcomp>tie_word_embeddings)
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsuse_sliding_windowr   r   num_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_dropoutr   layer_typesranger   super__init__)r   r   r   r    r!   r"   r$   r%   r   r&   r'   r(   r   r)   r*   r#   r   r   r,   r+   kwargs	__class__r   r   r/      sB    



zQwen2Config.__init__)r   r   r	   r
   r
   r
   r   r   r   r   TFr   NFr   r   Nr   )
__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferenceZbase_model_tp_planZbase_model_pp_planr/   __classcell__r   r   r1   r   r      sF   j


                   r   N)r6   Zconfiguration_utilsr   r   Zmodeling_rope_utilsr   utilsr   Z
get_loggerr3   loggerr   __all__r   r   r   r   <module>   s   
 B