a
    hb                     @   sP   d Z ddlmZ ddlmZmZ ddlmZ ee	Z
G dd deZdgZdS )	z!Tokenization class for Perceiver.    )Optional   )
AddedTokenPreTrainedTokenizer)loggingc                       s   e Zd ZdZddgZd&dd fddZeeef dddZ	e
dd Zd'ee eee  eee d fddZd(ee eee  ee dddZeee dddZdd Zdd  Zd!d" Zd)eee ee d#d$d%Z  ZS )*PerceiverTokenizeraS  
    Construct a Perceiver tokenizer. The Perceiver simply uses raw bytes utf-8 encoding.

    This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
    this superclass for more information regarding those methods.

    Args:
        pad_token (`str`, *optional*, defaults to `"[PAD]"`):
            The token used for padding, for example when batching sequences of different lengths.
        bos_token (`str`, *optional*, defaults to `"[BOS]"`):
            The BOS token (reserved in the vocab, but not actually used).
        eos_token (`str`, *optional*, defaults to `"[EOS]"`):
            The end of sequence token (reserved in the vocab, but not actually used).

            <Tip>

            When building a sequence using special tokens, this is not the token that is used for the end of sequence.
            The token used is the `sep_token`.

            </Tip>

        mask_token (`str`, *optional*, defaults to `"[MASK]"`):
            The MASK token, useful for masked language modeling.
        cls_token (`str`, *optional*, defaults to `"[CLS]"`):
            The CLS token (reserved in the vocab, but not actually used).
        sep_token (`str`, *optional*, defaults to `"[SEP]"`):
            The separator token, which is used when building a sequence from two sequences.

    Z	input_idsZattention_mask[PAD][BOS][EOS][MASK][CLS][SEP]   N)returnc           	   
      s   t |trt|dddn|}t |tr4t|dddn|}t |trPt|dddn|}t |trlt|dddn|}t |trt|dddn|}t |trt|dddn|}d| _||||||d| _t| j| _t jf |||||||d| d S )NF)lstriprstrip   )r         r         )	pad_token	bos_token	eos_token
mask_token	cls_token	sep_tokenmodel_max_length)	
isinstancestrr   _utf_vocab_sizeZ_added_tokens_decoderlen_num_special_tokenssuper__init__)	selfr   r   r   r   r   r   r   kwargs	__class__ p/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/perceiver/tokenization_perceiver.pyr$   ;   s4    zPerceiverTokenizer.__init__c                 C   s:   i }t | jD ]}t|}|| j ||< q|| j |S N)ranger    chrr"   updateadded_tokens_encoder)r%   Zvocabitokenr)   r)   r*   	get_vocabd   s    zPerceiverTokenizer.get_vocabc                 C   s   | j S r+   )r    )r%   r)   r)   r*   
vocab_sizel   s    zPerceiverTokenizer.vocab_sizeF)token_ids_0token_ids_1already_has_special_tokensr   c                    sf   |rt  j||ddS |du r8dgdgt|  dg S dgdgt|  dg dgt|  dg S )a  
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`list[int]`):
                List of IDs.
            token_ids_1 (`list[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `list[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        T)r4   r5   r6   Nr   r   )r#   get_special_tokens_maskr!   )r%   r4   r5   r6   r'   r)   r*   r7   p   s    z*PerceiverTokenizer.get_special_tokens_mask)r4   r5   r   c                 C   s@   |du r| j g| | jg S | j g| | jg | | jg S dS )af  
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks. A sequence has the
        following format:

        - single sequence: `[CLS] X [SEP]`
        - pair of sequences: `[CLS] A [SEP] B [SEP]`

        Args:
            token_ids_0 (`list[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`list[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `list[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        N)Zcls_token_idZsep_token_id)r%   r4   r5   r)   r)   r*    build_inputs_with_special_tokens   s    z3PerceiverTokenizer.build_inputs_with_special_tokens)textr   c                 C   s   dd | dD }|S )zPTake as input a string and return a list of strings (tokens) for words/sub-wordsc                 S   s   g | ]}t |qS r)   )r-   ).0r0   r)   r)   r*   
<listcomp>       z0PerceiverTokenizer._tokenize.<locals>.<listcomp>utf-8)encode)r%   r9   tokensr)   r)   r*   	_tokenize   s    zPerceiverTokenizer._tokenizec                 C   s&   t |dkr| j}nt|| j }|S )z0Converts a token (str) in an id using the vocab.r   )r!   Zunk_token_idordr"   )r%   r1   Ztoken_idr)   r)   r*   _convert_token_to_id   s    z'PerceiverTokenizer._convert_token_to_idc                 C   s   t || j }|S )z=Converts an index (integer) in a token (str) using the vocab.)r-   r"   )r%   indexr1   r)   r)   r*   _convert_id_to_token   s    z'PerceiverTokenizer._convert_id_to_tokenc                 C   sP   d}|D ]4}|| j v r&t|d}ntt|g}||7 }q|jddd}|S )z:Converts a sequence of tokens (string) in a single string.r<   r=   replace)errors)r/   r   r>   bytesrA   decode)r%   r?   bstringr1   Z
tok_stringstringr)   r)   r*   convert_tokens_to_string   s    

z+PerceiverTokenizer.convert_tokens_to_string)save_directoryfilename_prefixr   c                 C   s   dS )Nr)   r)   )r%   rL   rM   r)   r)   r*   save_vocabulary   s    z"PerceiverTokenizer.save_vocabulary)r   r	   r
   r   r   r   r   )NF)N)N)__name__
__module____qualname____doc__Zmodel_input_namesr$   dictr   intr2   propertyr3   listr   boolr7   r8   r@   rB   rD   rK   tuplerN   __classcell__r)   r)   r'   r*   r      s<          
)
  r   N)rR   typingr   Ztokenization_utilsr   r   utilsr   Z
get_loggerrO   loggerr   __all__r)   r)   r)   r*   <module>   s   
 /