a
    hc8                     @   s   d Z ddlmZ ddlmZ ddlmZmZmZ erLddl	m
Z
 ddlmZ ddlmZ dd	lmZ dd
lmZ eeZG dd deZG dd deZG dd deZG dd deZg dZdS )zOWL-ViT model configuration    OrderedDict)Mapping)TYPE_CHECKINGAnyOptional   )ProcessorMixin)
TensorType)PretrainedConfig)
OnnxConfig)loggingc                       s*   e Zd ZdZdZdZd fdd	Z  ZS )OwlViTTextConfiga  
    This is the configuration class to store the configuration of an [`OwlViTTextModel`]. It is used to instantiate an
    OwlViT text encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the OwlViT
    [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the OWL-ViT text model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`OwlViTTextModel`].
        hidden_size (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 16):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the padding token in the input sequences.
        bos_token_id (`int`, *optional*, defaults to 49406):
            The id of the beginning-of-sequence token in the input sequences.
        eos_token_id (`int`, *optional*, defaults to 49407):
            The id of the end-of-sequence token in the input sequences.

    Example:

    ```python
    >>> from transformers import OwlViTTextConfig, OwlViTTextModel

    >>> # Initializing a OwlViTTextModel with google/owlvit-base-patch32 style configuration
    >>> configuration = OwlViTTextConfig()

    >>> # Initializing a OwlViTTextConfig from the google/owlvit-base-patch32 style configuration
    >>> model = OwlViTTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zowlvit_text_modeltext_config                  
quick_geluh㈵>        {Gz?      ?r       c                    s`   t  jf |||d| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _d S )N)pad_token_idbos_token_ideos_token_id)super__init__
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddings
hidden_actlayer_norm_epsattention_dropoutinitializer_rangeinitializer_factor)selfr"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r   r   r   kwargs	__class__ k/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/owlvit/configuration_owlvit.pyr!   a   s    zOwlViTTextConfig.__init__)r   r   r   r   r   r   r   r   r   r   r   r   r   r   __name__
__module____qualname____doc__
model_typeZbase_config_keyr!   __classcell__r1   r1   r/   r2   r   "   s$   ;              r   c                       s*   e Zd ZdZdZdZd fdd	Z  ZS )OwlViTVisionConfigah  
    This is the configuration class to store the configuration of an [`OwlViTVisionModel`]. It is used to instantiate
    an OWL-ViT image encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the OWL-ViT
    [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 768):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import OwlViTVisionConfig, OwlViTVisionModel

    >>> # Initializing a OwlViTVisionModel with google/owlvit-base-patch32 style configuration
    >>> configuration = OwlViTVisionConfig()

    >>> # Initializing a OwlViTVisionModel model from the google/owlvit-base-patch32 style configuration
    >>> model = OwlViTVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zowlvit_vision_modelvision_config      r   r       r   r   r   r   r   c                    s^   t  jf i | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _d S )N)r    r!   r#   r$   r%   r&   num_channels
image_size
patch_sizer(   r)   r*   r+   r,   )r-   r#   r$   r%   r&   r?   r@   rA   r(   r)   r*   r+   r,   r.   r/   r1   r2   r!      s    zOwlViTVisionConfig.__init__)r<   r=   r   r   r   r<   r>   r   r   r   r   r   r3   r1   r1   r/   r2   r:      s    4            r:   c                       sD   e Zd ZdZdZeedZd fdd		Ze	e
e
dd
dZ  ZS )OwlViTConfiga  
    [`OwlViTConfig`] is the configuration class to store the configuration of an [`OwlViTModel`]. It is used to
    instantiate an OWL-ViT model according to the specified arguments, defining the text model and vision model
    configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWL-ViT
    [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`OwlViTTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`OwlViTVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original OWL-ViT
            implementation.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return a dictionary. If `False`, returns a tuple.
        kwargs (*optional*):
            Dictionary of keyword arguments.
    Zowlvit)r   r;   Nr   /L
F@Tc                    sz   t  jf i | |d u r(i }td |d u r>i }td tf i || _tf i || _|| _|| _	|| _
d| _d S )NzKtext_config is None. Initializing the OwlViTTextConfig with default values.zOvision_config is None. initializing the OwlViTVisionConfig with default values.r   )r    r!   loggerinfor   r   r:   r;   projection_dimlogit_scale_init_valuereturn_dictr,   )r-   r   r;   rF   rG   rH   r.   r/   r1   r2   r!      s    	

zOwlViTConfig.__init__c                 K   s&   i }||d< ||d< | j |fi |S )z
        Instantiate a [`OwlViTConfig`] (or a derived class) from owlvit text model configuration and owlvit vision
        model configuration.

        Returns:
            [`OwlViTConfig`]: An instance of a configuration object
        r   r;   )	from_dict)clsr   r;   r.   Zconfig_dictr1   r1   r2   from_text_vision_configs  s    	z%OwlViTConfig.from_text_vision_configs)NNr   rC   T)r4   r5   r6   r7   r8   r   r:   Zsub_configsr!   classmethoddictrK   r9   r1   r1   r/   r2   rB      s   
     rB   c                       s   e Zd Zeeeeeef f dddZeeeeeef f dddZee	dddZ
dd
eeed eeef d fddZeedddZ  ZS )OwlViTOnnxConfig)returnc                 C   s0   t ddddfdddddd	fd
dddfgS )NZ	input_idsbatchsequence)r      Zpixel_valuesr?   heightwidth)r   rR      r   Zattention_maskr   r-   r1   r1   r2   inputs#  s    zOwlViTOnnxConfig.inputsc                 C   s0   t dddifdddifdddifdddifgS )NZlogits_per_imager   rP   Zlogits_per_textZtext_embedsZimage_embedsr   rV   r1   r1   r2   outputs-  s    



zOwlViTOnnxConfig.outputsc                 C   s   dS )Ng-C6?r1   rV   r1   r1   r2   atol_for_validation8  s    z$OwlViTOnnxConfig.atol_for_validationNr	   r
   )	processor
batch_size
seq_length	frameworkrO   c                    s6   t  j|j|||d}t  j|j||d}i ||S )N)r\   r]   r^   )r\   r^   )r    generate_dummy_inputs	tokenizerZimage_processor)r-   r[   r\   r]   r^   Ztext_input_dictZimage_input_dictr/   r1   r2   r_   <  s    
z&OwlViTOnnxConfig.generate_dummy_inputsc                 C   s   dS )N   r1   rV   r1   r1   r2   default_onnx_opsetK  s    z#OwlViTOnnxConfig.default_onnx_opset)rZ   rZ   N)r4   r5   r6   propertyr   strintrW   rX   floatrY   r   r   r_   rb   r9   r1   r1   r/   r2   rN   "  s$    	 
   
rN   )rB   rN   r   r:   N)r7   collectionsr   collections.abcr   typingr   r   r   Zprocessing_utilsr	   utilsr
   Zconfiguration_utilsr   Zonnxr   r   Z
get_loggerr4   rD   r   r:   rB   rN   __all__r1   r1   r1   r2   <module>   s   
`XH.