a
    h7                     @   sJ  d dl mZmZ d dlZd dlmZ d dlmZ ddlm	Z	 ddl
mZ ddlmZ ddlmZ dd	lmZ d
dlmZmZmZ d
dlmZ d
dlmZmZmZmZmZmZ ee Z!G dd deZ"G dd deZ#dd Z$G dd deZ%G dd deZ&G dd deZ'G dd deZ(G dd deZ)G dd deZ*g d Z+dS )!    )CallableOptionalN)TransformersKwargs   )Cache)ALL_ATTENTION_FUNCTIONS)Unpack)logging)deprecate_kwarg   )LlamaPreTrainedModelLlamaRMSNormeager_attention_forward)
OlmoConfig)OlmoAttentionOlmoDecoderLayerOlmoForCausalLM	OlmoModelOlmoRotaryEmbeddingapply_rotary_pos_embc                       s`   e Zd ZdZdZddddddddZdgd	gfd
dgd
gfd
gd
gfdZd fdd	Z  ZS )Olmo2Configa  
    This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50304):
            Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Olmo2Model`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 50279):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
            `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
            experimental feature, subject to breaking API changes in future versions.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.

    ```python
    >>> from transformers import Olmo2Model, Olmo2Config

    >>> # Initializing a Olmo2 7B style configuration
    >>> configuration = Olmo2Config()

    >>> # Initializing a model from the Olmo2 7B style configuration
    >>> model = Olmo2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    Zolmo2Zcolwise_repZrowwise_repZcolwiseZrowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_projZ	input_idsZinputs_embedshidden_statesattention_mask)Zembed_tokenslayersnorm      +      Nsilu   {Gz?T   g  F     @        h㈵>c                    sF   t  jf |||||||||	|
||||||||d| || _| `d S )N)
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actmax_position_embeddingsinitializer_range	use_cachepad_token_idbos_token_ideos_token_idtie_word_embeddings
rope_thetarope_scalingattention_biasattention_dropout)super__init__rms_norm_epsZclip_qkv)selfr'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r;   kwargs	__class__ c/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/olmo2/modular_olmo2.pyr:   z   s0    zOlmo2Config.__init__)r   r   r   r   r   Nr   r    r!   Tr"   Nr#   Fr$   NFr%   r&   )	__name__
__module____qualname____doc__Z
model_typeZbase_model_tp_planZbase_model_pp_planr:   __classcell__r@   r@   r>   rA   r      sD   M


                   r   c                   @   s   e Zd Zdd ZdS )Olmo2RMSNormc                 C   sJ   |j }|tj}|djddd}|t|| j  }| j| |S )Nr   T)Zkeepdim)	ZdtypetotorchZfloat32powmeanZrsqrtZvariance_epsilonweight)r<   r   Zinput_dtypeZvariancer@   r@   rA   forward   s
    zOlmo2RMSNorm.forwardN)rB   rC   rD   rN   r@   r@   r@   rA   rG      s   rG   c                 C   sH   | dd| j d d f }| d| j d d df }tj| |fddS )z*Rotates half the hidden dims of the input..NrH   r   )dim)shaperJ   cat)xx1Zx2r@   r@   rA   rotate_half   s    rT   c                       s   e Zd Zdeee d fddZedddddej	e
ej	ej	f eej	 ee eej ee e
ej	eej	 f d	d
dZ  ZS )Olmo2AttentionNconfig	layer_idxc                    s@   t  j||d t|j| j |j| _t|j| j |j| _d S )NrX   )	r9   r:   rG   r+   head_dimr;   q_normr,   k_normr<   rW   rX   r>   r@   rA   r:      s    zOlmo2Attention.__init__past_key_valuepast_key_values4.58new_nameversion)r   position_embeddingsr   r_   cache_positionr=   returnc                 K   s<  |j d d }g |d| jR }| | |}	| | |}
| |}|	|dd}	|
|dd}
||dd}|\}}t	|	|
||\}	}
|d ur|||d}|
|
|| j|\}
}t}| jjdkrt| jj }|| |	|
||f| jsdn| j| jd|\}}|jg |dR   }| |}||fS )NrH   r"   r   )sincosre   eagerr%   )Zdropoutscaling)rP   rZ   r[   Zq_projr\   Zk_projZv_projviewZ	transposer   updaterX   r   rW   Z_attn_implementationr   Ztrainingr8   rj   Zreshape
contiguousZo_proj)r<   r   rd   r   r_   re   r=   Zinput_shapeZhidden_shapeZquery_statesZ
key_statesZvalue_statesrh   rg   Zcache_kwargsZattention_interfaceZattn_outputZattn_weightsr@   r@   rA   rN      s>    



zOlmo2Attention.forward)N)NN)rB   rC   rD   r   r   intr:   r
   rJ   Tensortupler   
LongTensorr   r   rN   rF   r@   r@   r>   rA   rU      s     rU   c                       s   e Zd Zeed fddZedddddeje	ej e	ej
 e	e e	e e	ej
 e	eejejf  ee ejd
	ddZ  ZS )Olmo2DecoderLayerrV   c                    sJ   t  j||d t|j|jd| _t|j|jd| _t||d| _| `	d S )NrY   epsrV   )
r9   r:   rG   r(   r;   post_attention_layernormpost_feedforward_layernormrU   	self_attnZinput_layernormr]   r>   r@   rA   r:      s
    zOlmo2DecoderLayer.__init__r^   r_   r`   ra   NF)	r   r   position_idsr_   r0   re   rd   r=   rf   c              
   K   s^   |}	| j f |||||||d|\}}
| |}|	| }|}	| |}| |}|	| }|S )N)r   r   rx   r_   r0   re   rd   )rw   ru   Zmlprv   )r<   r   r   rx   r_   r0   re   rd   r=   Zresidual_r@   r@   rA   rN     s&    




zOlmo2DecoderLayer.forward)NNNFNN)rB   rC   rD   r   rn   r:   r
   rJ   ro   r   rq   r   boolrp   r   r   rN   rF   r@   r@   r>   rA   rr      s&         rr   c                   @   s   e Zd ZdS )Olmo2RotaryEmbeddingNrB   rC   rD   r@   r@   r@   rA   r{   $  s   r{   c                   @   s   e Zd ZdS )Olmo2PreTrainedModelNr|   r@   r@   r@   rA   r}   (  s   r}   c                       s"   e Zd Zed fddZ  ZS )
Olmo2ModelrW   c                    sB   t    t j jd| _t fddt j	D | _
d S )Nrs   c                    s   g | ]}t  |qS r@   )rr   ).0rX   r   r@   rA   
<listcomp>3      z'Olmo2Model.__init__.<locals>.<listcomp>)r9   r:   rG   r(   r;   r   nnZ
ModuleListranger*   r   )r<   rW   r>   r   rA   r:   /  s
    zOlmo2Model.__init__)rB   rC   rD   r   r:   rF   r@   r@   r>   rA   r~   .  s   r~   c                   @   s   e Zd ZdS )Olmo2ForCausalLMNr|   r@   r@   r@   rA   r   8  s   r   )r   r   r~   r}   ),typingr   r   rJ   Ztorch.nnr   Ztransformers.utils.genericr   Zcache_utilsr   Zmodeling_utilsr   Zprocessing_utilsr   utilsr	   Zutils.deprecationr
   Zllama.modeling_llamar   r   r   Zolmo.configuration_olmor   Zolmo.modeling_olmor   r   r   r   r   r   Z
get_loggerrB   loggerr   rG   rT   rU   rr   r{   r}   r~   r   __all__r@   r@   r@   rA   <module>   s.    

 	
:*
