a
    ½Àhç  ã                   @   sL   d Z ddlmZ ddlmZ ddlmZ e e¡Z	G dd„ deƒZ
dgZdS )zNemotron model configurationé   )ÚPretrainedConfig)Úrope_config_validation)Úloggingc                       s,   e Zd ZdZdZdgZd‡ fdd„	Z‡  ZS )ÚNemotronConfigaØ  
    This is the configuration class to store the configuration of a [`NemotronModel`]. It is used to instantiate an Nemotron
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Nemotron-8B.
    e.g. [nvidia/nemotron-3-8b-base-4k-hf](https://huggingface.co/nvidia/nemotron-3-8b-base-4k-hf).
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 256000):
            Vocabulary size of the Nemotron model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`NemotronModel`]
        hidden_size (`int`, *optional*, defaults to 6144):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 24576):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 48):
            Number of attention heads for each attention layer in the Transformer decoder.
        head_dim (`int`, *optional*):
            Projection weights dimension in multi-head attention. Set to hidden_size // num_attention_heads if None
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.0134):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 2):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 3):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        partial_rotary_factor (`float`, *optional*, defaults to 0.5): Percentage of the query and keys which will have rotary embedding.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj and down_proj layers in the MLP layers.

    ```python
    >>> from transformers import NemotronModel, NemotronConfig

    >>> # Initializing a Nemotron nemotron-15b style configuration
    >>> configuration = NemotronConfig()

    >>> # Initializing a model from the nemotron-15b style configuration
    >>> model = NemotronModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZnemotronZpast_key_valuesé è é   é `  é    é0   NÚrelu2é   çS–!Žuq‹?çñhãˆµøä>Té   r   Fç     ˆÃ@ç      à?ç        c                    sž   || _ |	| _|| _|| _|| _|| _|d ur0|n|| | _|| _|| _|
| _	|| _
|| _|| _|| _t| ƒ || _|| _|| _tƒ jf ||||dœ|¤Ž d S )N)Úpad_token_idÚbos_token_idÚeos_token_idÚtie_word_embeddings)Ú
vocab_sizeÚmax_position_embeddingsÚhidden_sizeÚintermediate_sizeÚnum_hidden_layersÚnum_attention_headsÚhead_dimÚnum_key_value_headsÚ
hidden_actÚinitializer_rangeÚnorm_epsÚ	use_cacheÚ
rope_thetaÚpartial_rotary_factorr   Úattention_biasÚattention_dropoutÚmlp_biasÚsuperÚ__init__)Úselfr   r   r   r   r   r   r   r   r   r    r!   r"   r   r   r   r   r#   r$   r%   r&   r'   Úkwargs©Ú	__class__© úo/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/nemotron/configuration_nemotron.pyr)   g   s4    üûzNemotronConfig.__init__)r   r   r   r	   r
   NNr   r   r   r   TNr   r   Fr   r   Fr   F)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typeZkeys_to_ignore_at_inferencer)   Ú__classcell__r.   r.   r,   r/   r      s2   I                     êr   N)r3   Zconfiguration_utilsr   Zmodeling_rope_utilsr   Úutilsr   Z
get_loggerr0   Úloggerr   Ú__all__r.   r.   r.   r/   Ú<module>   s   
 