a
    h>                     @   s^   d Z ddlmZ ddlmZ ddlmZ eeZ	G dd deZ
G dd	 d	eZd	dgZd
S )zMoshi model configuration   )PretrainedConfig)logging   )
AutoConfigc                       s,   e Zd ZdZdZdgZd fdd	Z  ZS )MoshiDepthConfigaD  
    This is the configuration class to store the configuration of a [`MoshiDepthDecoder`]. It is used to instantiate a
    Moshi depth decoder model according to the specified arguments, defining the Moshi depth decoder config.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the MoshiDepthDecoder model. Defines the number of different tokens that can be
            represented by the `inputs_ids` passed when calling [`MoshiDepthDecoder`].
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the layers and the pooler layer of the depth decoder.
        input_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the input hidden states. Used to connect the main decoder to the depth decoder.
        num_hidden_layers (`int`, *optional*, defaults to 6):
            Number of depth decoder layers.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the depth decoder block.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`.
        audio_vocab_size (`int`, *optional*, defaults to 2048):
            Vocabulary size of the audio part of model. Defines the number of different tokens that can be
            represented by the `audio_codes` passed when calling the Moshi models.
        max_position_embeddings (`int`, *optional*, defaults to 9):
            The maximum sequence length that this model might ever be used with. Typically, set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the depth decoder.
        head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
            The attention head dimension.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        sliding_window (`int`, *optional*, defaults to 8):
            Sliding window attention window size. If not specified, will default to `8`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        ffn_dim (`int`, *optional*, defaults to 5632):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the depth decoder block. Must be even.
        rms_norm_eps (`float`, *optional*, defaults to 1e-08):
            The epsilon used by the rms normalization layers.
        num_codebooks (`int`, *optional*, defaults to 8):
            The number of audio codebooks for each audio channels.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        kwargs (*optional*):
            Dictionary of keyword arguments. Notably:
                - **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
                  defines the audio encoder config.

    Example:

    ```python
    >>> from transformers import (
    ...     MoshiDepthConfig,
    ...     MoshiDepthDecoder,
    ... )

    >>> configuration = MoshiDepthConfig()

    >>> # Initializing a MoshiDepthDecoder (with random weights) from the kmhf/hf-moshiko style configuration
    >>> model = MoshiDepthDecoder(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zmoshi_depthpast_key_values }              N   	   silu{Gz?T              :0yE>Fc                    s   || _ || _|| _|| _|| _|d ur*|n|| _|| _|	| _|
pF|| | _|| _	|| _
|| _|| _|d dkr~td| d|| _|| _|| _|| _t jf d|i| d S )Nr      	`ffn_dim=` must be even.tie_word_embeddings)
vocab_sizehidden_size
input_sizenum_hidden_layersnum_attention_headsnum_key_value_headsmax_position_embeddings
hidden_acthead_diminitializer_range	use_cachesliding_windowattention_dropout
ValueErrorffn_dimrms_norm_epsnum_codebooksaudio_vocab_sizesuper__init__)selfr   r   r   r   r   r   r*   r   r    r!   r"   r#   r$   r%   r'   r(   r)   r   kwargs	__class__ i/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/moshi/configuration_moshi.pyr,   h   s(    zMoshiDepthConfig.__init__)r   r	   r
   r   r   Nr   r   r   Nr   Tr   r   r   r   r   F)__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencer,   __classcell__r1   r1   r/   r2   r      s,   K                  r   c                       sT   e Zd ZdZdZdgZeedZd fdd	Z	e
dd ZeedddZ  ZS )MoshiConfiga  
    This is the configuration class to store the configuration of a [`MoshiModel`]. It is used to instantiate a
    Moshi model according to the specified arguments, defining the audio encoder, Moshi depth decoder and Moshi decoder
    configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Moshiko model,
    e.g. [kmhf/hf-moshiko](https://huggingface.co/kmhf/hf-moshiko)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the MoshiDecoder model. Defines the number of different tokens that can be
            represented by the `inputs_ids` passed when calling [`MoshiDecoder`].
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the layers and the pooler layer of the main decoder.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of decoder layers.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the main decoder block.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`.
        audio_vocab_size (`int`, *optional*):
            Vocabulary size of the audio part of model. Defines the number of different tokens that can be
            represented by the `audio_codes` passed when calling the Moshi models.
        max_position_embeddings (`int`, *optional*, defaults to 3000):
            The maximum sequence length that this model might ever be used with. Typically, set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
            The attention head dimension.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        sliding_window (`int`, *optional*, defaults to 3000):
            Sliding window attention window size. If not specified, will default to `3000`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        ffn_dim (`int`, *optional*, defaults to 22528):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the main decoder block. Must be even.
        rms_norm_eps (`float`, *optional*, defaults to 1e-08):
            The epsilon used by the rms normalization layers.
        num_codebooks (`int`, *optional*, defaults to 8):
            The number of audio codebooks for each audio channels.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        kwargs (*optional*):
            Dictionary of keyword arguments. Notably:
                - **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
                  defines the audio encoder config.
                - **depth__config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
                  defines the depth decoder config.


    Example:

    ```python
    >>> from transformers import (
    ...     MoshiConfig,
    ...     MoshiForConditionalGeneration,
    ... )

    >>> configuration = MoshiConfig()

    >>> # Initializing a MoshiForConditionalGeneration (with random weights) from the kmhf/hf-moshiko style configuration
    >>> model = MoshiForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # Saving the model, including its configuration
    >>> model.save_pretrained("kmhf/hf-moshiko")

    >>> # loading model and config from pretrained folder
    >>> moshi_config = MoshiConfig.from_pretrained("kmhf/hf-moshiko")
    >>> model = MoshiForConditionalGeneration.from_pretrained("kmhf/hf-moshiko", config=moshi_config)
    ```Zmoshir   )audio_encoder_configdepth_decoder_configr   r
       N       @r   r   Tr    X  r   r   Fc                    sF  || _ || _|| _|| _|d ur$|n|| _|| _|| _|	| _|
pF|| | _|| _	|| _
|| _|| _|d dkr~td| d|| _|| _|| _|di }|dd}tj|fi || _| j| jjkrtd| d	| jj d
|d u r| jjn|| _|di }|| j|||d tf i || _t jf d|i| d S )Nr   r   r   r   r;   r7   Zmimiz`num_codebooks=zX` is greater than the maximum number of codebooks that the audio encoder can deal with (z). Please lower it.r<   )r*   r   r   r)   r   )r   r   r   r   r   r   
rope_thetar    r!   r"   r#   r$   r%   r&   r'   r(   r)   popr   Z	for_modelr;   Zcodebook_sizer*   updater   r<   r+   r,   )r-   r   r   r   r   r   r*   r   rA   r    r!   r"   r#   r$   r%   r'   r(   r)   r   r.   r;   Zaudio_encoder_model_typer<   r/   r1   r2   r,      sJ    	zMoshiConfig.__init__c                 C   s   | j jS )N)r;   sampling_rate)r-   r1   r1   r2   rD   6  s    zMoshiConfig.sampling_rate)r;   c                 K   s   | f d|  i|S )z
        Instantiate a [`MoshiConfig`] (or a derived class) from an audio encoder configuration.

        Returns:
            [`MoshiConfig`]: An instance of a configuration object
        r;   )to_dict)clsr;   r.   r1   r1   r2   from_audio_encoder_config:  s
    z%MoshiConfig.from_audio_encoder_config)r   r
   r=   r=   NNr>   r?   r   Nr   Tr>   r   r@   r   r   F)r3   r4   r5   r6   r7   r8   r   r   Zsub_configsr,   propertyrD   classmethodr   rG   r9   r1   r1   r/   r2   r:      s8   W
                  E
r:   N)r6   Zconfiguration_utilsr   utilsr   Zauto.configuration_autor   Z
get_loggerr3   loggerr   r:   __all__r1   r1   r1   r2   <module>   s   
| 9