a
    ½Àh".  ã                   @   s*   d dl mZmZ G dd„ deƒZdgZdS )é   )ÚPretrainedConfigÚlayer_type_validationc                        sh   e Zd ZdZdZdgZdddddddddœZdgd	gfd
dgd
gfd
gd
gfdœZd!‡ fdd „	Z‡  Z	S )"ÚMiniMaxConfigaÛ  
    This is the configuration class to store the configuration of a [`MiniMaxModel`]. It is used to instantiate an
    MiniMax model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the MiniMax.

    [MiniMaxAI/MiniMax-Text-01-hf](https://huggingface.co/MiniMaxAI/MiniMax-Text-01-hf)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the MiniMax model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MiniMaxModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
        head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
            The attention head dimension.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
            The maximum sequence length that this model might ever be used with. MiniMax's sliding window attention
            allows sequence of up to 4096*32 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 1000000.0):
            The base period of the RoPE embeddings.
        sliding_window (`int`, *optional*):
            Sliding window attention window size. If not specified, will default to `4096`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        num_experts_per_tok (`int`, *optional*, defaults to 2):
            The number of experts to route per-token, can be also interpreted as the `top-k` routing
            parameter
        num_local_experts (`int`, *optional*, defaults to 8):
            Number of experts per Sparse MLP layer.
        output_router_logits (`bool`, *optional*, defaults to `False`):
            Whether or not the router logits should be returned by the model. Enabeling this will also
            allow the model to output the auxiliary loss. See [here]() for more details
        router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
            The aux loss factor for the total loss.
        router_jitter_noise (`float`, *optional*, defaults to 0.0):
            Amount of noise to add to the router.
        layer_types (`list`, *optional*):
            Attention pattern for each layer.
        block_size (`int`, *optional*, defaults to 256):
            The length of each attention block, determining how queries, keys, and values
            are grouped and processed for intra- and inter-block attention.
        full_attn_alpha_factor (`float`, *optional*, defaults to 1):
            Weight for residual value in residual connection after normal attention.
        full_attn_beta_factor (`float`, *optional*, defaults to 1):
            Weight for hidden state value in residual connection after normal attention.
        linear_attn_alpha_factor (`float`, *optional*, defaults to 1):
            Weight for residual value in residual connection after lightning attention.
        linear_attn_beta_factor (`float`, *optional*, defaults to 1):
            Weight for hidden state value in residual connection after lightning attention.
        mlp_alpha_factor (`float`, *optional*, defaults to 1):
            Weight for residual value in residual connection after MLP.
        mlp_beta_factor (`float`, *optional*, defaults to 1):
            Weight for hidden state value in residual connection after MLP.

    ```python
    >>> from transformers import MiniMaxModel, MiniMaxConfig

    >>> # Initializing a MiniMax style configuration
    >>> configuration = MiniMaxConfig()

    >>> # Initializing a model from the MiniMax style configuration
    >>> model = MiniMaxModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZminimaxZpast_key_valuesZcolwiseZrowwiseZcolwise_rep)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.block_sparse_moe.gatez&layers.*.block_sparse_moe.experts.*.w1z&layers.*.block_sparse_moe.experts.*.w2z&layers.*.block_sparse_moe.experts.*.w3Z	input_idsZinputs_embedsZhidden_statesZattention_mask)Zembed_tokensZlayersZnormé }  é   é 8  é    é   NÚsilué   ç{®Gáz”?çñhãˆµøä>Té   é   Fç    €„.Aç        çü©ñÒMbP?é   c!           "         sþ   t ƒ jf ||||dœ|!¤Ž || _|	| _|| _|| _|| _|| _|| _|d u rR|}|| _	|| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _| | _| jd u rðdd„ t| jƒD ƒ| _t| jƒ d S )N)Úpad_token_idÚbos_token_idÚeos_token_idÚtie_word_embeddingsc                 S   s$   g | ]}t |d  d ƒrdnd‘qS )r   r   Zfull_attentionZlinear_attention)Úbool)Ú.0Úi© r   úm/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/minimax/configuration_minimax.pyÚ
<listcomp>à   s   z*MiniMaxConfig.__init__.<locals>.<listcomp>) ÚsuperÚ__init__Ú
vocab_sizeÚmax_position_embeddingsÚhidden_sizeÚintermediate_sizeÚnum_hidden_layersÚnum_attention_headsÚsliding_windowÚnum_key_value_headsÚ
hidden_actÚinitializer_rangeÚrms_norm_epsÚ	use_cacheÚ
rope_thetaÚattention_dropoutÚhead_dimÚnum_experts_per_tokÚnum_local_expertsÚoutput_router_logitsÚrouter_aux_loss_coefÚrouter_jitter_noiseÚlayer_typesÚ
block_sizeÚfull_attn_alpha_factorÚfull_attn_beta_factorÚlinear_attn_alpha_factorÚlinear_attn_beta_factorÚmlp_alpha_factorÚmlp_beta_factorÚranger   )"Úselfr    r"   r#   r$   r%   r'   r.   r(   r!   r)   r*   r+   r   r   r   r   r,   r&   r-   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   Úkwargs©Ú	__class__r   r   r   ‘   sV    $üû
ÿzMiniMaxConfig.__init__) r   r   r   r   r   r	   Nr
   r   r   r   TNr   r   Fr   Nr   r   r	   Fr   r   Nr   r   r   r   r   r   r   )
Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typeZkeys_to_ignore_at_inferenceZbase_model_tp_planZbase_model_pp_planr   Ú__classcell__r   r   r?   r   r      sb   eø

ý                                ßr   N)Zconfiguration_utilsr   r   r   Ú__all__r   r   r   r   Ú<module>   s    N