a
    ½Àh	  ã                   @   sH   d Z ddlZddlmZ ddlmZ e e¡ZG dd„ deƒZ	dgZ
dS )zMAMBA configurationé    Né   )ÚPretrainedConfig)Úloggingc                       s&   e Zd ZdZdZd‡ fdd„	Z‡  ZS )ÚMambaConfigaÂ  
    This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the MAMBA
    [state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50280):
            Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MambaModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the embeddings and hidden states.
        state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the model.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
            The epsilon to use in the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 0):
            The id of the beginning of sentence token in the vocabulary.
        eos_token_id (`int`, *optional*, defaults to 0):
            The id of the end of sentence token in the vocabulary.
        expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
        conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
        use_bias (`bool`, *optional*, defaults to `False`):
            Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
        use_conv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use bias in the convolution layer of the mixer block.
        hidden_act (`str`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        initializer_range (`float`, *optional*, defaults to 0.1):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        residual_in_fp32 (`bool`, *optional*, defaults to `True`):
            Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
        time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
            Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
        time_step_scale (`float`, *optional*, defaults to 1.0):
            Scale used used to scale `dt_proj.bias`.
        time_step_min (`float`, *optional*, defaults to 0.001):
            Minimum `time_step` used to bound `dt_proj.bias`.
        time_step_max (`float`, *optional*, defaults to 0.1):
            Maximum `time_step` used to bound `dt_proj.bias`.
        time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
            Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
        time_step_floor (`float`, *optional*, defaults to 0.0001):
            Minimum clamping value of the `dt_proj.bias` layer initialization.
        rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
            Whether or not to rescale `out_proj` weights when initializing.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the cache should be used.
        use_mambapy (`bool`, *optional*, defaults to `False`):
            Determines the fallback strategy during training if the CUDA-based official implementation of Mamba is not available. If `True`, the mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited.


    Example:

    ```python
    >>> from transformers import MambaConfig, MambaModel

    >>> # Initializing a Mamba configuration
    >>> configuration = MambaConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = MambaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZmambaéhÄ  é   é   é    çñhãˆµøä>r   é   é   FTÚsiluçš™™™™™¹?Úautoç      ð?çü©ñÒMbP?Úrandomç-Cëâ6?c                    sÖ   || _ || _|| _|| _|| _|
| _|	| _t|	| j ƒ| _|| _	|| _
|| _|| _|| _|| _|| _|dkr|t | jd ¡n|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _tƒ jf |||dœ|¤Ž d S )Nr   r   )Úbos_token_idÚeos_token_idÚpad_token_id)Ú
vocab_sizeÚhidden_sizeÚ
state_sizeÚnum_hidden_layersÚlayer_norm_epsilonÚconv_kernelÚexpandÚintZintermediate_sizer   r   r   Úuse_biasÚuse_conv_biasÚ
hidden_actÚinitializer_rangeÚmathÚceilÚtime_step_rankÚtime_step_scaleÚtime_step_minÚtime_step_maxÚtime_step_init_schemeÚtime_step_floorÚrescale_prenorm_residualÚresidual_in_fp32Ú	use_cacheÚuse_mambapyÚsuperÚ__init__)Úselfr   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r,   r%   r&   r'   r(   r)   r*   r+   r-   r.   Úkwargs©Ú	__class__© úi/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/mamba/configuration_mamba.pyr0   g   s4    zMambaConfig.__init__)r   r   r   r	   r
   r   r   r   r   r   FTr   r   Tr   r   r   r   r   r   FTF)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer0   Ú__classcell__r5   r5   r3   r6   r      s6   J                        çr   )r:   r#   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr7   Úloggerr   Ú__all__r5   r5   r5   r6   Ú<module>   s   
 