a
    h>                     @   s   d dl mZmZ d dlmZmZmZmZ d dlm	Z	m
Z
 ddlmZ ddlmZmZ G dd ded	d
ZG dd ded	d
ZdZG dd deZdgZdS )    )OptionalUnion)ImagesKwargsProcessingKwargsProcessorMixinUnpack)PreTokenizedInput	TextInput   )BatchFeature)
ImageInputmake_flat_list_of_imagesc                   @   s&   e Zd ZU ee ed< ee ed< dS )Llama4ImagesKwargsZmax_patchesZresize_to_max_canvasN)__name__
__module____qualname__r   int__annotations__bool r   r   h/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/llama4/processing_llama4.pyr      s   
r   F)totalc                   @   s"   e Zd ZU eed< dddiiZdS )Llama4ProcessorKwargsimages_kwargstext_kwargsZpadding_sideleftN)r   r   r   r   r   	_defaultsr   r   r   r   r      s
   
r   a>  {{- bos_token }}
{%- if custom_tools is defined %}
    {%- set tools = custom_tools %}
{%- endif %}
{%- if not tools_in_user_message is defined %}
    {%- set tools_in_user_message = true %}
{%- endif %}
{%- if not date_string is defined %}
    {%- if strftime_now is defined %}
        {%- set date_string = strftime_now("%d %b %Y") %}
    {%- else %}
        {%- set date_string = "26 Jul 2024" %}
    {%- endif %}
{%- endif %}
{%- if not tools is defined %}
    {%- set tools = none %}
{%- endif %}

{#- This block extracts the system message, so we can slot it into the right place. #}
{%- if messages[0]['role'] == 'system' %}    
    {%- if messages[0]['content'] is string %}
        {%- set system_message = messages[0]['content']|trim %}
    {%- else %}
        {#- FIXME: The processor requires an array, always. #}
        {%- set system_message = messages[0]['content'][0]['text']|trim %}
    {%- endif %}
    {%- set messages = messages[1:] %}
    {%- set user_supplied_system_message = true %}
{%- else %}
    {%- set system_message = "" %}
    {%- set user_supplied_system_message = false %}
{%- endif %}

{#- System message if the user supplied one #}
{%- if user_supplied_system_message %}
    {{- "<|header_start|>system<|header_end|>

" }}
    {%- if tools is not none %}
        {{- "Environment: ipython
" }}
    {%- endif %}
    {%- if tools is not none and not tools_in_user_message %}
        {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
        {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
        {{- "Do not use variables.

" }}
        {%- for t in tools %}
            {{- t | tojson(indent=4) }}
            {{- "

" }}
        {%- endfor %}
    {%- endif %}
    {{- system_message }}
    {{- "<|eot|>" }}
{%- endif %}

{#- Custom tools are passed in a user message with some extra guidance #}
{%- if tools_in_user_message and not tools is none %}
    {#- Extract the first user message so we can plug it in here #}
    {%- if messages | length != 0 %}
        {%- set first_user_message = messages[0]['content']|trim %}
        {%- set messages = messages[1:] %}
    {%- else %}
        {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
{%- endif %}
    {{- '<|header_start|>user<|header_end|>

' -}}
    {{- "Given the following functions, please respond with a JSON for a function call " }}
    {{- "with its proper arguments that best answers the given prompt.

" }}
    {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
    {{- "Do not use variables.

" }}
    {%- for t in tools %}
        {{- t | tojson(indent=4) }}
        {{- "

" }}
    {%- endfor %}
    {{- first_user_message + "<|eot|>"}}
{%- endif %}

{%- for message in messages %}
    {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
    {{- '<|header_start|>' + message['role'] + '<|header_end|>

' }}
        {%- if message['content'] is string %}
            {{- message['content'] }}
        {%- else %}
            {%- for content in message['content'] %}
                {%- if content['type'] == 'image' %}
                    {{- '<|image|>' }}
                {%- elif content['type'] == 'text' %}
                    {{- content['text'] }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- "<|eot|>" }}
    {%- elif 'tool_calls' in message and message.tool_calls|length > 0 %}
       {{- '<|header_start|>assistant<|header_end|>

' -}}
       {{- '<|python_start|>' }}
        {%- if message['content'] is string %}
            {{- message['content'] }}
        {%- else %}
            {%- for content in message['content'] %}
                {%- if content['type'] == 'image' %}
                    {{- '<|image|>' }}
                {%- elif content['type'] == 'text' %}
                    {{- content['text'] }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
       {{- '<|python_end|>' }}
        {%- for tool_call in message.tool_calls %}
           {{- '{"name": "' + tool_call.function.name + '", ' }}
           {{- '"parameters": ' }}
           {{- tool_call.function.arguments | tojson }}
           {{- "}" }}
        {%- endfor %}
       {{- "<|eot|>" }}
    {%- elif message.role == "tool" or message.role == "ipython" %}
        {{- "<|header_start|>ipython<|header_end|>

" }}
        {%- if message.content is mapping or message.content is iterable %}
            {{- message.content | tojson }}
        {%- else %}
            {{- message.content }}
        {%- endif %}
        {{- "<|eot|>" }}
    {%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
    {{- '<|header_start|>assistant<|header_end|>

' }}
{%- endif %}
c                       s   e Zd ZdZddgZdZdZddddd	d	d
ddddefee	d fddZ
dd Zdee eeeeee ee f  ee edddZ  ZS )Llama4Processora  
    Constructs a Llama4 processor which wraps a [`AutoImageProcessor`] and
    [`PretrainedTokenizerFast`] tokenizer into a single processor that inherits both the image processor and
    tokenizer functionalities. See the [`~Llama4Processor.__call__`] and [`~Llama4Processor.decode`] for more information.
    Args:
        image_processor ([`AutoImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`], *optional*):
            The tokenizer is a required input.
        patch_size (`int`, *optional*, defaults to 28):
            The size of image patches for tokenization.
        img_size (`int`, *optional*, defaults to 364):
            The size of the image to be tokenized. This should correspond to the size given to the image processor.
        image_token (`str`, *optional*, defaults to `"<|image|>"`):
            The token to be used to represent an image in the text.
        downsample_factor (`int`, *optional*, defaults to 1):
            The factor by which to scale the patch size.
        start_of_img_token (`str`, *optional*, defaults to `"<|START_OF_IMG|>"`):
            The token to be used to represent the start of an image in the text.
        end_of_img_token (`str`, *optional*, defaults to `"<|END_OF_IMG|>"`):
            The token to be used to represent the end of an image in the text.
        img_patch_token (`str`, *optional*, defaults to `"<|IMG_PATCH|>"`):
            The token to be used to represent an image patch in the text.
        img_line_break_token (`str`, *optional*, defaults to `"<|IMG_LINE_BREAK|>"`):
            The token to be used to represent a line break in the text.
        tile_token (`str`, *optional*, defaults to `"TILE"`):
            The token to be used to represent an image patch in the text.
        tile_global_token (`str`, *optional*, defaults to `"TILE_GLOBAL"`):
            The token to be used to represent the cover image in the text.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    image_processor	tokenizerZAutoImageProcessorZAutoTokenizerN   g      ?	<|image|><|image_start|><|image_end|>	<|patch|><|tile_x_separator|><|tile_y_separator|>)
patch_sizepixel_shuffle_ratioc                    sj   t  j|||d ttd|d  | _|| _|| _|| _|| j| _	|| _
|| _|	| _|
| _|| _d S )N)chat_templateg      ?   )super__init__r   rounddownsample_ratior'   fake_image_tokenimage_tokenZconvert_tokens_to_idsZimage_token_idZstart_of_img_tokenZend_of_img_tokenZimg_patch_tokenZ
tile_tokenZtile_global_token)selfr   r   r'   r(   r/   r0   Zstart_of_image_tokenZend_of_image_tokenZpatch_tokenZtile_x_separator_tokenZtile_y_separator_tokenr)   kwargs	__class__r   r   r,   Q   s    zLlama4Processor.__init__c                 C   s|   d}|\}}|| dkr\t |D ]:}t |D ]$}|d| 7 }||d k r,|d7 }q,|d7 }q |d7 }|d| 7 }|d7 }|S )z
        Create a structured string representation of image tokens

        Args:
           num_patches: Number of patches in the image

        Returns:
            String with appropriate image tokens
        r"      r$   r%   r&   r!   r#   )range)r1   Zaspect_rationum_patches_per_chunkZ
img_stringZratio_hZratio_wyyxxr   r   r   _prompt_split_imageo   s    


z#Llama4Processor._prompt_split_image)imagestextr2   returnc                    s  |du rt d jtfd jji|}t|ttfs>|g}i }|dur j	|}t
|} jf d|i|d }|d d jdd \}}	t| j |	 j   j }
|d	}t fd
d|D }|t|krt d| dt| dd}g }|D ]}| j}|dkr*|| q| j}g }t|D ]@\}}|| ||k rB || |
}|d7 }|| qB|d| q|t|krt d|}|d dd} j|fi |d } j||dgd ti |||dS )au  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] to encode the text.
        To prepare the vision inputs, this method forwards the `images` and `kwargs` arguments to
        Llama4ImageProcessor's [`~Llama4ImageProcessor.__call__`] if `images` is not `None`.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `list[str]`, `list[list[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        NzYou have to specify text.Ztokenizer_init_kwargsr;   r   Zpixel_valuesr   aspect_ratiosc                 3   s   | ]}|  jV  qd S )N)countr/   ).0promptr1   r   r   	<genexpr>       z+Llama4Processor.__call__.<locals>.<genexpr>zFound z) placeholders across the batch, but have z flattened images.r5    zONumber of image placeholders in the prompt does not match the number of images.r   return_tensorsimage)Z
modalities)dataZtensor_type)
ValueErrorZ_merge_kwargsr   r   Zinit_kwargs
isinstancelisttupler   Zfetch_imagesr   shaper   r'   r.   popsumlenr@   r/   appendsplit	enumerater:   joinZ_check_special_mm_tokensr   )r1   r;   r<   ZaudioZvideosr2   Zoutput_kwargsZimage_inputsZimage_heightZimage_widthr7   r?   Ztotal_placeholdersZimage_indexZprocessed_textrB   Zplaceholder_countZprompt_splitsZ
new_promptZlocal_image_indexZ
split_partZtokens_for_this_imagerG   Ztext_inputsr   rC   r   __call__   sj    &





zLlama4Processor.__call__)NNNN)r   r   r   __doc__
attributesZimage_processor_classZtokenizer_classr)   r   floatr,   r:   r   r   r   r	   r   rL   r   r   r   rV   __classcell__r   r   r3   r   r   +   s>   !    r   N)typingr   r   Ztransformers.processing_utilsr   r   r   r   Z$transformers.tokenization_utils_baser   r	   Zimage_processing_utilsr   Zimage_utilsr   r   r   r   r)   r   __all__r   r   r   r   <module>   s   	 E