a
    ½Àh—  ã                   @   s2   d dl mZ ddlmZ G dd„ deƒZdgZdS )é    )ÚOptionalé   )ÚPretrainedConfigc                       sl   e Zd ZdZdZdgZdeeeeeeeeeeeeeeeeeeeee	e
e  e	e
e  dœ‡ fdd„Z‡  ZS )Ú
Lfm2Configa{  
    This is the configuration class to store the configuration of a [`Lfm2Model`]. It is used to instantiate a LFM2
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LFM2-1.2B model.
    e.g. [LiquidAI/LFM2-1.2B](https://huggingface.co/LiquidAI/LFM2-1.2B)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 65536):
            Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Lfm2Model`]
        hidden_size (`int`, *optional*, defaults to 2560):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 12288):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        max_position_embeddings (`int`, *optional*, defaults to 128000):
            The maximum sequence length that this model might ever be used with. Lfm2 1 supports up to 2048 tokens,
            Lfm2 2 up to 4096, CodeLfm2 up to 16384.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 1000000.0):
            The base period of the RoPE embeddings.
        conv_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in the conv layers.
        conv_L_cache (`int`, *optional*, defaults to 3):
            L_cache dim in the conv layers.
        block_multiple_of (`int`, *optional*, defaults to 256):
            Multiple for the `intermediate_size`.
        block_ffn_dim_multiplier (`float`, *optional*, defaults to 1.0):
            Multiplier for the `intermediate_size`.
        block_auto_adjust_ff_dim (`bool`, *optional*, defaults to `True`):
            Whether to adjust the dim of the `intermediate_size`.
        full_attn_idxs (`Optional`, *optional*):
            Index of the layers which use attention.
        layer_types (`Optional`, *optional*):
            Type of each layers.

    ```python
    >>> from transformers import Lfm2Model, Lfm2Config

    >>> # Initializing a LFM2 model
    >>> configuration = Lfm2Config()

    >>> # Initializing a model from the LFM2-1.2B style configuration
    >>> model = Lfm2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zlfm2Zpast_key_valuesé   é 
  é 0  é    é   é ô ç{®Gáz”?çñhãˆµøä>Tr   é   é   ç    €„.AFr   é   ç      ð?N)Ú
vocab_sizeÚhidden_sizeÚintermediate_sizeÚnum_hidden_layersÚnum_attention_headsÚnum_key_value_headsÚmax_position_embeddingsÚinitializer_rangeÚnorm_epsÚ	use_cacheÚpad_token_idÚbos_token_idÚeos_token_idÚtie_word_embeddingsÚ
rope_thetaÚ	conv_biasÚconv_L_cacheÚblock_multiple_ofÚblock_ffn_dim_multiplierÚblock_auto_adjust_ff_dimÚfull_attn_idxsÚlayer_typesc                    sÜ   || _ || _|| _| d|¡| _|| _|
| _|	| _|| _|| _	|| _
|| _|| _| d|¡| _|| _|| _|| _|| _| jd u r°ˆ d urŒˆ n
tt|ƒƒ‰ ‡ fdd„t|ƒD ƒ| _| d|¡}tƒ jf ||||dœ|¤Ž d S )NÚthetaZblock_ff_dimc                    s   g | ]}|ˆ v rd nd‘qS )Zfull_attentionÚconv© )Ú.0Úi©r'   r+   úg/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/lfm2/configuration_lfm2.pyÚ
<listcomp>™   ó    z'Lfm2Config.__init__.<locals>.<listcomp>Ztie_embedding)r   r   r   r    )r   r   r   Úgetr!   r   r   r   r   r   r   r"   r#   r   r$   r%   r&   r(   ÚlistÚrangeÚsuperÚ__init__)Úselfr   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   Úkwargs©Ú	__class__r.   r/   r6   e   s:    
üûzLfm2Config.__init__)r   r   r   r	   r	   r
   r   r   r   Tr   r   r   Tr   Fr   r   r   TNN)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typeZkeys_to_ignore_at_inferenceÚintÚfloatÚboolr   r3   Ústrr6   Ú__classcell__r+   r+   r9   r/   r      sb   N                      é

ér   N)Útypingr   Zconfiguration_utilsr   r   Ú__all__r+   r+   r+   r/   Ú<module>   s    