a
    hq%                     @   s   d Z ddlZddlmZ ddlmZ ddlmZmZ ddl	m
Z
mZ ddlmZmZ dd	lmZmZmZ eeZG d
d de
ZG dd deZddgZdS )zLayoutLM model configuration    NOrderedDict)Mapping)AnyOptional   )PretrainedConfigPreTrainedTokenizer)
OnnxConfigPatchingSpec)
TensorTypeis_torch_availableloggingc                       s@   e Zd ZdZdZd fdd	Zedd Zejdd Z  Z	S )LayoutLMConfiga  
    This is the configuration class to store the configuration of a [`LayoutLMModel`]. It is used to instantiate a
    LayoutLM model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the LayoutLM
    [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) architecture.

    Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the
    documentation from [`BertConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the LayoutLM model. Defines the different tokens that can be represented by the
            *inputs_ids* passed to the forward method of [`LayoutLMModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed into [`LayoutLMModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            The value used to pad input_ids.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://huggingface.co/papers/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://huggingface.co/papers/2009.13658).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum value that the 2D position embedding might ever used. Typically set this to something large
            just in case (e.g., 1024).

    Examples:

    ```python
    >>> from transformers import LayoutLMConfig, LayoutLMModel

    >>> # Initializing a LayoutLM configuration
    >>> configuration = LayoutLMConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = LayoutLMModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zlayoutlm:w           gelu皙?      {Gz?-q=r   absoluteT   c                    st   t  jf d|i| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _d S )Npad_token_id)super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_eps_position_embedding_type	use_cachemax_2d_position_embeddings)selfr   r    r!   r"   r$   r#   r%   r&   r'   r(   r)   r*   r   position_embedding_typer,   r-   kwargs	__class__ o/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/layoutlm/configuration_layoutlm.pyr   e   s     zLayoutLMConfig.__init__c                 C   s   t dt | jS )NzSThe `position_embedding_type` attribute is deprecated and will be removed in v4.55.)warningswarnFutureWarningr+   r.   r3   r3   r4   r/      s
    z&LayoutLMConfig.position_embedding_typec                 C   s
   || _ d S )N)r+   )r.   valuer3   r3   r4   r/      s    )r   r   r   r   r   r   r   r   r   r   r   r   r   r   Tr   )
__name__
__module____qualname____doc__Z
model_typer   propertyr/   setter__classcell__r3   r3   r1   r4   r      s.   D                %
r   c                	       s|   e Zd Zdeeeee  d fddZe	e
ee
eef f dddZdeeeeee e
eef d fddZ  ZS )LayoutLMOnnxConfigdefaultN)configtaskpatching_specsc                    s"   t  j|||d |jd | _d S )N)rD   rE      )r   r   r-   Zmax_2d_positions)r.   rC   rD   rE   r1   r3   r4   r      s    zLayoutLMOnnxConfig.__init__)returnc                 C   s8   t ddddfddddfddddfddddfgS )N	input_idsbatchsequence)r   rF   bboxZattention_maskZtoken_type_idsr   r8   r3   r3   r4   inputs   s    zLayoutLMOnnxConfig.inputsF)	tokenizer
batch_size
seq_lengthis_pair	frameworkrG   c           	         sz   t  j|||||d}g d}|tjks0tdt s>tdddl}|d j\}}|	g |g| 
|dd|d	< |S )
a  
        Generate inputs to provide to the ONNX exporter for the specific framework

        Args:
            tokenizer: The tokenizer associated with this model configuration
            batch_size: The batch size (int) to export the model for (-1 means dynamic axis)
            seq_length: The sequence length (int) to export the model for (-1 means dynamic axis)
            is_pair: Indicate if the input is a pair (sentence 1, sentence 2)
            framework: The framework (optional) the tokenizer will generate tensor for

        Returns:
            Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
        )rO   rP   rQ   rR   )0   T   I      zCExporting LayoutLM to ONNX is currently only supported for PyTorch.z7Cannot generate dummy inputs without PyTorch installed.r   NrH   rF   rK   )r   generate_dummy_inputsr   ZPYTORCHNotImplementedErrorr   
ValueErrortorchshapeZtensorZtile)	r.   rN   rO   rP   rQ   rR   Z
input_dictboxrZ   r1   r3   r4   rW      s    

"z(LayoutLMOnnxConfig.generate_dummy_inputs)rB   N)rM   rM   FN)r:   r;   r<   r   strr   listr   r   r>   r   intrL   r	   boolr   r   rW   r@   r3   r3   r1   r4   rA      s*     
	     
rA   )r=   r5   collectionsr   collections.abcr   typingr   r    r   r	   Zonnxr
   r   utilsr   r   r   Z
get_loggerr:   loggerr   rA   __all__r3   r3   r3   r4   <module>   s   
y>