a
    ½ÀhÔ  ã                   @   s&   d dl mZ G dd„ deƒZdgZdS )é   )ÚPretrainedConfigc                       sf   e Zd ZdZdZdgZddddddddœZdgdgfd	d
gd	gfd	gd	gfdœZd‡ fdd„	Z‡  Z	S ) ÚHeliumConfiga  
    This is the configuration class to store the configuration of a [`HeliumModel`]. It is used to instantiate an Helium
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Helium 2b model.
    e.g. [kyutai/helium-2b](https://huggingface.co/kyutai/helium-2b)
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 48000):
            Vocabulary size of the Helium model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`HeliumModel`]
        hidden_size (`int`, *optional*, defaults to 2560):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 7040):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 20):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 20):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        head_dim (`int`, *optional*, defaults to 128):
            The attention head dimension.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The legacy activation function. It is overwritten by the `hidden_activation`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-08):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 100000.0):
            The base period of the RoPE embeddings.
        pad_token_id (`int`, *optional*, defaults to 3):
            Padding token id.
        eos_token_id (`int` | `list`, *optional*, defaults to 2):
            End of stream token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
    ```python
    >>> from transformers import HeliumModel, HeliumConfig
    >>> # Initializing a Helium 2b style configuration
    >>> configuration = HeliumConfig()
    >>> # Initializing a model from the Helium 2b style configuration
    >>> model = HeliumModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZheliumZpast_key_valuesZcolwiseZrowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_projZ	input_idsZinputs_embedsZhidden_statesZattention_mask)Zembed_tokensZlayersZnormé€»  é 
  é€  é   é   é€   Úsiluç        é   ç{®Gáz”?ç:Œ0âŽyE>TFç     jø@r   é   é   c                    s€   || _ |
| _|| _|| _|| _|| _|| _|| _|| _|| _	|| _
|| _|| _|| _|	| _|| _tƒ jf ||||dœ|¤Ž d S )N)Úpad_token_idÚbos_token_idÚeos_token_idÚtie_word_embeddings)Ú
vocab_sizeÚmax_position_embeddingsÚhidden_sizeÚintermediate_sizeÚnum_hidden_layersÚnum_attention_headsÚnum_key_value_headsÚhead_dimÚ
hidden_actÚinitializer_rangeÚrms_norm_epsÚ	use_cacheÚ
rope_thetaÚattention_biasÚattention_dropoutÚmlp_biasÚsuperÚ__init__)Úselfr   r   r   r   r   r   r   r   r$   r   r   r    r!   r   r"   r   r   r   r#   r%   Úkwargs©Ú	__class__© úk/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/helium/configuration_helium.pyr'   h   s0    üûzHeliumConfig.__init__)r   r   r   r   r   r   r	   r
   r   r   r   r   TFr   r   r   r   FF)
Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typeZkeys_to_ignore_at_inferenceZbase_model_tp_planZbase_model_pp_planr'   Ú__classcell__r,   r,   r*   r-   r      sH   Bù


ý                    ër   N)Zconfiguration_utilsr   r   Ú__all__r,   r,   r,   r-   Ú<module>   s    