a
    hH                     @   s   d Z ddlmZ ddlmZ ddlmZmZmZ ddl	m
Z
 ddlmZ ddlmZ erpdd	lmZ dd
lmZ eeZG dd de
ZG dd de
ZG dd de
ZG dd deZg dZdS )zGroupViT model configuration    OrderedDict)Mapping)TYPE_CHECKINGAnyOptional   )PretrainedConfig)
OnnxConfig)logging)ProcessorMixin)
TensorTypec                       s*   e Zd ZdZdZdZd fdd	Z  ZS )GroupViTTextConfiga>  
    This is the configuration class to store the configuration of a [`GroupViTTextModel`]. It is used to instantiate an
    GroupViT model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the GroupViT
    [nvidia/groupvit-gcc-yfcc](https://huggingface.co/nvidia/groupvit-gcc-yfcc) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the GroupViT text model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`GroupViTModel`].
        hidden_size (`int`, *optional*, defaults to 256):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 4):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 77):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import GroupViTTextConfig, GroupViTTextModel

    >>> # Initializing a GroupViTTextModel with nvidia/groupvit-gcc-yfcc style configuration
    >>> configuration = GroupViTTextConfig()

    >>> model = GroupViTTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zgroupvit_text_modeltext_config               M   
quick_geluh㈵>        {Gz?      ?       c                    sf   t  jf |||d| || _|| _|| _|	| _|| _|| _|| _|| _	|| _
|| _|| _|
| _d S )N)pad_token_idbos_token_ideos_token_id)super__init__
vocab_sizehidden_sizeintermediate_sizedropoutnum_hidden_layersnum_attention_headsmax_position_embeddingslayer_norm_eps
hidden_actinitializer_rangeinitializer_factorattention_dropout)selfr#   r$   r%   r'   r(   r)   r+   r*   r&   r.   r,   r-   r   r   r    kwargs	__class__ o/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/groupvit/configuration_groupvit.pyr"   [   s    zGroupViTTextConfig.__init__)r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   __name__
__module____qualname____doc__
model_typeZbase_config_keyr"   __classcell__r3   r3   r1   r4   r   "   s&   5               r   c                       s^   e Zd ZdZdZdZddg ddg dg d	d
ddddddddddddgf fdd	Z  ZS )GroupViTVisionConfiga@  
    This is the configuration class to store the configuration of a [`GroupViTVisionModel`]. It is used to instantiate
    an GroupViT model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the GroupViT
    [nvidia/groupvit-gcc-yfcc](https://huggingface.co/nvidia/groupvit-gcc-yfcc) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 384):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 1536):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        depths (`list[int]`, *optional*, defaults to [6, 3, 3]):
            The number of layers in each encoder block.
        num_group_tokens (`list[int]`, *optional*, defaults to [64, 8, 0]):
            The number of group tokens for each stage.
        num_output_groups (`list[int]`, *optional*, defaults to [64, 8, 8]):
            The number of output groups for each stage, 0 means no group.
        num_attention_heads (`int`, *optional*, defaults to 6):
            Number of attention heads for each attention layer in the Transformer encoder.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import GroupViTVisionConfig, GroupViTVisionModel

    >>> # Initializing a GroupViTVisionModel with nvidia/groupvit-gcc-yfcc style configuration
    >>> configuration = GroupViTVisionConfig()

    >>> model = GroupViTVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zgroupvit_vision_modelvision_configi  i   )   r   r   r   )@      r   )r?   r@   r@   r>         r   Zgelur   r   r   r   g      ?r   c                    s   t  jf i | || _|| _|| _|t|krJtd| dt|  || _|| _	|| _
|| _|| _|	| _|
| _|| _|| _|| _|| _|| _|| _|| _|| _d S )Nz&Manually setting num_hidden_layers to z1, but we expect num_hidden_layers = sum(depth) = )r!   r"   r$   r%   depthssumloggerwarningr'   num_group_tokensnum_output_groupsr(   
image_size
patch_sizenum_channelsr+   r*   r&   r.   r,   r-   
assign_epsassign_mlp_ratio)r/   r$   r%   rC   r'   rG   rH   r(   rI   rJ   rK   r+   r*   r&   r.   r,   r-   rL   rM   r0   r1   r3   r4   r"      s2    zGroupViTVisionConfig.__init__r5   r3   r3   r1   r4   r<   ~   s,   7r<   c                       s0   e Zd ZdZdZeedZd
 fdd		Z  Z	S )GroupViTConfiga  
    [`GroupViTConfig`] is the configuration class to store the configuration of a [`GroupViTModel`]. It is used to
    instantiate a GroupViT model according to the specified arguments, defining the text model and vision model
    configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the GroupViT
    [nvidia/groupvit-gcc-yfcc](https://huggingface.co/nvidia/groupvit-gcc-yfcc) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`GroupViTTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`GroupViTVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 256):
            Dimensionality of text and vision projection layers.
        projection_intermediate_dim (`int`, *optional*, defaults to 4096):
            Dimensionality of intermediate layer of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original GroupViT
            implementation.
        kwargs (*optional*):
            Dictionary of keyword arguments.
    Zgroupvit)r   r=   Nr      /L
F@c                    s  | dd }| dd }t jf i | |d ur|d u r>i }tf i | }	|	 D ]V\}
}|
|v rX|||
 krX|
dvrX|
|v rd|
 d|
 d}nd|
 d}t| qX||	 |d urz|d u ri }t	f i | }d	|v rd
d |d	  D |d	< | D ]`\}
}|
|v r|||
 kr|
dvr|
|v rVd|
 d|
 d}nd|
 d}t| q|| |d u ri }td |d u ri }td tf i || _
t	f i || _|| _|| _|| _d| _d| _d| _d S )Ntext_config_dictvision_config_dict)Ztransformers_version`zp` is found in both `text_config_dict` and `text_config` but with different values. The value `text_config_dict["z"]` will be used instead.zn`text_config_dict` is provided which will be used to initialize `GroupViTTextConfig`. The value `text_config["z"]` will be overridden.Zid2labelc                 S   s   i | ]\}}t ||qS r3   )str).0keyvaluer3   r3   r4   
<dictcomp>>  s   z+GroupViTConfig.__init__.<locals>.<dictcomp>zv` is found in both `vision_config_dict` and `vision_config` but with different values. The value `vision_config_dict["zt`vision_config_dict` is provided which will be used to initialize `GroupViTVisionConfig`. The value `vision_config["zS`text_config` is `None`. Initializing the `GroupViTTextConfig` with default values.zW`vision_config` is `None`. initializing the `GroupViTVisionConfig` with default values.r   r   F)popr!   r"   r   to_dictitemsrE   infoupdater<   r   r=   projection_dimprojection_intermediate_dimlogit_scale_init_valuer,   r-   Zoutput_segmentation)r/   r   r=   r^   r_   r`   r0   rQ   rR   Z_text_config_dictrV   rW   messageZ_vision_config_dictr1   r3   r4   r"     sn    




"





zGroupViTConfig.__init__)NNr   rO   rP   )
r6   r7   r8   r9   r:   r   r<   Zsub_configsr"   r;   r3   r3   r1   r4   rN      s   
     rN   c                       s   e Zd Zeeeeeef f dddZeeeeeef f dddZee	dddZ
dd
eeed eeef d fddZeedddZ  ZS )GroupViTOnnxConfig)returnc                 C   s0   t ddddfdddddd	fd
dddfgS )NZ	input_idsbatchsequence)r   r   Zpixel_valuesrK   heightwidth)r   r      r   Zattention_maskr   r/   r3   r3   r4   inputsj  s    zGroupViTOnnxConfig.inputsc                 C   s0   t dddifdddifdddifdddifgS )NZlogits_per_imager   rd   Zlogits_per_textZtext_embedsZimage_embedsr   ri   r3   r3   r4   outputst  s    



zGroupViTOnnxConfig.outputsc                 C   s   dS )Ng-C6?r3   ri   r3   r3   r4   atol_for_validation  s    z&GroupViTOnnxConfig.atol_for_validationNr   r   )	processor
batch_size
seq_length	frameworkrc   c                    s6   t  j|j|||d}t  j|j||d}i ||S )N)ro   rp   rq   )ro   rq   )r!   generate_dummy_inputs	tokenizerZimage_processor)r/   rn   ro   rp   rq   Ztext_input_dictZimage_input_dictr1   r3   r4   rr     s    
z(GroupViTOnnxConfig.generate_dummy_inputsc                 C   s   dS )N   r3   ri   r3   r3   r4   default_onnx_opset  s    z%GroupViTOnnxConfig.default_onnx_opset)rm   rm   N)r6   r7   r8   propertyr   rT   intrj   rk   floatrl   r   r   rr   ru   r;   r3   r3   r1   r4   rb   i  s$    	 
   
rb   )rN   rb   r   r<   N)r9   collectionsr   collections.abcr   typingr   r   r   Zconfiguration_utilsr	   Zonnxr
   utilsr   Zprocessing_utilsr   r   Z
get_loggerr6   rE   r   r<   rN   rb   __all__r3   r3   r3   r4   <module>   s   
\l.