a
    h"                     @   s   d Z ddlmZ ddlmZ ddlmZmZ ddlm	Z	m
Z
mZ ddlmZ ddlmZmZ dd	lmZ eeZG d
d deZG dd deZddgZdS )zGPT-J model configuration    )OrderedDict)Mapping)AnyOptional   )PreTrainedTokenizer
TensorTypeis_torch_available)PretrainedConfig)OnnxConfigWithPastPatchingSpec)loggingc                       s4   e Zd ZdZdZdddddZd fdd	Z  ZS )
GPTJConfiga=  
    This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the GPT-J
    [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
    [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
    for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 50400):
            Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`GPTJModel`].
        n_positions (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        n_embd (`int`, *optional*, defaults to 4096):
            Dimensionality of the embeddings and hidden states.
        n_layer (`int`, *optional*, defaults to 28):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        rotary_dim (`int`, *optional*, defaults to 64):
            Number of dimensions in the embedding that Rotary Position Embedding is applied to.
        n_inner (`int`, *optional*, defaults to None):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
        activation_function (`str`, *optional*, defaults to `"gelu_new"`):
            Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`int`, *optional*, defaults to 0.1):
            The dropout ratio for the embeddings.
        attn_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).

    Example:

    ```python
    >>> from transformers import GPTJModel, GPTJConfig

    >>> # Initializing a GPT-J 6B configuration
    >>> configuration = GPTJConfig()

    >>> # Initializing a model from the configuration
    >>> model = GPTJModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zgptjn_positionsn_embdn_headn_layer)Zmax_position_embeddingshidden_sizenum_attention_headsZnum_hidden_layers              @   Ngelu_new        h㈵>{Gz?TP  Fc                    s~   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _t jf |||d| d S )N)bos_token_ideos_token_idtie_word_embeddings)
vocab_sizer   r   r   r   n_inner
rotary_dimactivation_functionresid_pdrop
embd_pdrop
attn_pdroplayer_norm_epsiloninitializer_range	use_cacher    r!   super__init__)selfr#   r   r   r   r   r%   r$   r&   r'   r(   r)   r*   r+   r,   r    r!   r"   kwargs	__class__ g/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/gptj/configuration_gptj.pyr.   ^   s*    zGPTJConfig.__init__)r   r   r   r   r   r   Nr   r   r   r   r   r   Tr   r   F)__name__
__module____qualname____doc__Z
model_typeZattribute_mapr.   __classcell__r3   r3   r1   r4   r      s2   7	                 r   c                	       s   e Zd Zdeeeee  ed fddZ	e
eeeeef f ddd	Ze
edd
dZe
edddZdeeeeee eeef d fddZe
edddZ  ZS )GPTJOnnxConfigdefaultNF)configtaskpatching_specsuse_pastc                    s.   t  j||||d t| jdd s*d| j_d S )N)r=   r>   r?   pad_token_idr   )r-   r.   getattr_configr@   )r/   r<   r=   r>   r?   r1   r3   r4   r.      s    zGPTJOnnxConfig.__init__)returnc                 C   sH   t ddddi}| jr6| j|dd ddd|d< nddd|d< |S )	N	input_idsbatchsequence)r      inputs)	directionzpast_sequence + sequenceattention_mask)r   r?   Zfill_with_past_key_values_)r/   common_inputsr3   r3   r4   rH      s    zGPTJOnnxConfig.inputsc                 C   s   | j jS N)rB   r   r/   r3   r3   r4   
num_layers   s    zGPTJOnnxConfig.num_layersc                 C   s   | j jS rL   )rB   r   rM   r3   r3   r4   r      s    z"GPTJOnnxConfig.num_attention_heads)	tokenizer
batch_size
seq_lengthis_pair	frameworkrC   c                    s   t t| j|||||d}td|d i}| jrt s@tdnTdd l|d j\}}	|	d }
|| j	|
| j
j| j	 f  fddt| jD |d< |d	 |d	< | jr|d	 j}j|d	 j||
|d
gdd|d	< |S )N)rQ   rR   rS   rT   rD   zACannot generate dummy past_keys inputs without PyTorch installed.r      c                    s    g | ]}    fqS r3   )Zzeros).0_Z
past_shapetorchr3   r4   
<listcomp>   s   z8GPTJOnnxConfig.generate_dummy_inputs.<locals>.<listcomp>Zpast_key_valuesrJ   )dtyperG   )dim)r-   r   generate_dummy_inputsr   r?   r	   
ValueErrorrY   shaper   rB   r   rangerN   r[   catZones)r/   rP   rQ   rR   rS   rT   rK   Zordered_inputsrE   ZseqlenZpast_key_values_lengthZ
mask_dtyper1   rX   r4   r]      s2    





z$GPTJOnnxConfig.generate_dummy_inputsc                 C   s   dS )N   r3   rM   r3   r3   r4   default_onnx_opset   s    z!GPTJOnnxConfig.default_onnx_opset)r;   NF)rO   rO   FN)r5   r6   r7   r
   strr   listr   boolr.   propertyr   intrH   rN   r   r   r   r   r]   rc   r9   r3   r3   r1   r4   r:      s:      
 
    
,r:   N)r8   collectionsr   collections.abcr   typingr   r    r   r   r	   Zconfiguration_utilsr
   Zonnxr   r   utilsr   Z
get_loggerr5   loggerr   r:   __all__r3   r3   r3   r4   <module>   s   
mQ