a
    h/                     @   s   d Z ddlmZ ddlmZ ddlmZmZ ddlm	Z	m
Z
mZ ddlmZ ddlmZmZ dd	lmZ eeZG d
d deZG dd deZddgZdS )zOpenAI GPT-2 configuration    )OrderedDict)Mapping)AnyOptional   )PreTrainedTokenizer
TensorTypeis_torch_available)PretrainedConfig)OnnxConfigWithPastPatchingSpec)loggingc                       s:   e Zd ZdZdZdgZdddddZd fdd	Z  ZS )
GPT2ConfigaK  
    This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to
    instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the GPT-2
    [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50257):
            Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
        n_positions (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        n_embd (`int`, *optional*, defaults to 768):
            Dimensionality of the embeddings and hidden states.
        n_layer (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        n_inner (`int`, *optional*):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
        activation_function (`str`, *optional*, defaults to `"gelu_new"`):
            Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the embeddings.
        attn_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        summary_type (`string`, *optional*, defaults to `"cls_index"`):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            Has to be one of the following options:

                - `"last"`: Take the last token hidden state (like XLNet).
                - `"first"`: Take the first token hidden state (like BERT).
                - `"mean"`: Take the mean of all tokens hidden states.
                - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
                - `"attn"`: Not implemented now, use multi-head attention.
        summary_use_proj (`bool`, *optional*, defaults to `True`):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            Whether or not to add a projection after the vector extraction.
        summary_activation (`str`, *optional*):
            Argument used when doing sequence summary. Used in for the multiple choice head in
            [`GPT2DoubleHeadsModel`].

            Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
        summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
        summary_first_dropout (`float`, *optional*, defaults to 0.1):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            The dropout ratio to be used after the projection and activation.
        scale_attn_weights (`bool`, *optional*, defaults to `True`):
            Scale attention weights by dividing by sqrt(hidden_size)..
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        bos_token_id (`int`, *optional*, defaults to 50256):
            Id of the beginning of sentence token in the vocabulary.
        eos_token_id (`int`, *optional*, defaults to 50256):
            Id of the end of sentence token in the vocabulary.
        scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
            Whether to additionally scale attention weights by `1 / layer_idx + 1`.
        reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
            Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
            dot-product/softmax to float() when training with mixed precision.

    Example:

    ```python
    >>> from transformers import GPT2Config, GPT2Model

    >>> # Initializing a GPT2 configuration
    >>> configuration = GPT2Config()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = GPT2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zgpt2past_key_valuesn_embdn_positionsn_headn_layer)hidden_sizeZmax_position_embeddingsnum_attention_headsZnum_hidden_layersQ           Ngelu_new皙?h㈵>{Gz?	cls_indexTP  Fc                    s   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _t jf ||d| d S )N)bos_token_ideos_token_id)
vocab_sizer   r   r   r   n_inneractivation_functionresid_pdrop
embd_pdrop
attn_pdroplayer_norm_epsiloninitializer_rangesummary_typesummary_use_projsummary_activationsummary_first_dropoutsummary_proj_to_labelsscale_attn_weights	use_cachescale_attn_by_inverse_layer_idxreorder_and_upcast_attnr    r!   super__init__)selfr"   r   r   r   r   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r.   r-   r/   r0   r    r!   r1   r2   kwargs	__class__ g/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/gpt2/configuration_gpt2.pyr4      s0    zGPT2Config.__init__)r   r   r   r   r   Nr   r   r   r   r   r   r   TNTr   TTr   r   FF)	__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferenceZattribute_mapr4   __classcell__r9   r9   r7   r:   r      s@   a	                       r   c                	       s   e Zd Zdeeeee  ed fddZ	e
eeeeef f ddd	Ze
edd
dZe
edddZdeeeeee eeef d fddZe
edddZ  ZS )GPT2OnnxConfigdefaultNF)configtaskpatching_specsuse_pastc                    s.   t  j||||d t| jdd s*d| j_d S )N)rC   rD   rE   pad_token_idr   )r3   r4   getattr_configrF   )r5   rB   rC   rD   rE   r7   r9   r:   r4      s    zGPT2OnnxConfig.__init__)returnc                 C   sH   t ddddi}| jr6| j|dd ddd|d< nddd|d< |S )	N	input_idsbatchsequence)r      inputs)	directionzpast_sequence + sequenceattention_mask)r   rE   Zfill_with_past_key_values_)r5   common_inputsr9   r9   r:   rN      s    zGPT2OnnxConfig.inputsc                 C   s   | j jS N)rH   r   r5   r9   r9   r:   
num_layers   s    zGPT2OnnxConfig.num_layersc                 C   s   | j jS rR   )rH   r   rS   r9   r9   r:   r      s    z"GPT2OnnxConfig.num_attention_heads)	tokenizer
batch_size
seq_lengthis_pair	frameworkrI   c                    s   t t| j|||||d}td|d i}| jrt s@tdnTdd l|d j\}}	|	d }
|| j	|
| j
j| j	 f  fddt| jD |d< |d	 |d	< | jr|d	 j}j|d	 j||
|d
gdd|d	< |S )N)rW   rX   rY   rZ   rJ   zACannot generate dummy past_keys inputs without PyTorch installed.r      c                    s    g | ]}    fqS r9   )Zzeros).0_Z
past_shapetorchr9   r:   
<listcomp>   s   z8GPT2OnnxConfig.generate_dummy_inputs.<locals>.<listcomp>r   rP   )dtyperM   )dim)r3   r   generate_dummy_inputsr   rE   r	   
ValueErrorr_   shaper   rH   r   rangerT   ra   catZones)r5   rV   rW   rX   rY   rZ   rQ   Zordered_inputsrK   ZseqlenZpast_key_values_lengthZ
mask_dtyper7   r^   r:   rc      s2    





z$GPT2OnnxConfig.generate_dummy_inputsc                 C   s   dS )N   r9   rS   r9   r9   r:   default_onnx_opset  s    z!GPT2OnnxConfig.default_onnx_opset)rA   NF)rU   rU   FN)r;   r<   r=   r
   strr   listr   boolr4   propertyr   intrN   rT   r   r   r   r   rc   ri   r?   r9   r9   r7   r:   r@      s:      
 
    
,r@   N)r>   collectionsr   collections.abcr   typingr   r    r   r   r	   Zconfiguration_utilsr
   Zonnxr   r   utilsr   Z
get_loggerr;   loggerr   r@   __all__r9   r9   r9   r:   <module>   s   
 #Q