a
    h-]                     @   s  d Z ddlmZmZmZ ddlZddlmZ ddlmZ ddl	m
Z
mZ ddlmZmZ dd	lmZmZ dd
lmZmZ ddlmZ ddlmZ ddlmZmZ ddlmZ ddlmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z( ddl)m*Z*m+Z+ e,e-Z.dZ/dZ0G dd deZ1G dd de%Z2G dd de&Z3G dd dej4Z5G dd de+Z6G dd de*Z7G dd  d e$Z8G d!d" d"e8e#Z9G d#d$ d$eZ:G d%d& d&e!Z;G d'd( d(e"Z<G d)d* d*e Z=g d+Z>dS ),zLG AI Research EXAONE Lab    )CallableOptionalUnionN)nn)check_model_inputs   )CacheDynamicCache)PretrainedConfiglayer_type_validation)create_causal_mask!create_sliding_window_causal_mask)BaseModelOutputWithPastCausalLMOutputWithPast)ALL_ATTENTION_FUNCTIONS)Unpack)TransformersKwargslogging)deprecate_kwarg   )
LlamaForCausalLMLlamaForQuestionAnsweringLlamaForSequenceClassificationLlamaForTokenClassification
LlamaModelLlamaPreTrainedModelLlamaRMSNormLlamaRotaryEmbeddingapply_rotary_pos_embeager_attention_forward)Olmo2DecoderLayerOlmo2MLPzLGAI-EXAONE/EXAONE-4.0-InstructExaone4Configc                       sf   e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZd fdd	Z  Z	S )r"   a  
    This is the configuration class to store the configuration of a [`Exaone4Model`]. It is used to
    instantiate a EXAONE 4.0 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the EXAONE-4.0-Instruct [LGAI-EXAONE/EXAONE-4.0-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-Instruct)
    NOTE: `EXAONE-4.0-Instruct` is a placeholder model ID. The exact model ID will be updated in the future.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
    outputs. Read the documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 102400):
            Vocabulary size of the EXAONE 4.0 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Exaone4Model`].
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to `hidden_size * 4`):
            Dimensionality of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 32768 for EXAONE 3.5).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if ``config.is_decoder=True``.
        bos_token_id (`int`, *optional*, defaults to 0):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        sliding_window (`int`, *optional*):
            The size of the sliding window for the sliding window attention.
        sliding_window_pattern (`str`, *optional*):
            The pattern to use for sliding window attention. Can be one of:
                - `None`: No sliding window attention is used
                - `int`: Every `sliding_window` layers, use global attention, else use local attention.
                - `str`: A sequence of "L" (local attention) and "G" (global attention) characters that defines the
                  attention pattern. The pattern starts from layer 0 and repeats every `sliding_window` layers. The
                  final layer always uses global attention regardless of the pattern.
            For instance, sliding_window_pattern="LLLG" same as sliding_window=4, which means:
                - Layer 0, 1, 2: local attention,
                - Layer 3: global attention,
                ...(repeated)
        layer_types (`list`, *optional*):
            Attention pattern for each layer. Prioritized over `sliding_window_pattern`.

    Example:

    ```python
    >>> from transformers import Exaone4Model, Exaone4Config

    >>> # Initializing a EXAONE configuration
    >>> configuration = Exaone4Config()

    >>> # Initializing a model from configuration
    >>> model = Exaone4Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zexaone4past_key_valuesZcolwiseZrowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnorm      @      silu   {Gz?h㈵>Tr   r   F     @N           c                    s   | _ | _| _| _| _| _| _| _|	 _|
 _	| _
| _| _| _| _ _| _ jd u rtd jd u r fddt jD  _d jv rd _t j t jf |||d| d S )Nr   c                    s.   g | ]&}|d   dkr&| j k r&dndqS )   r   sliding_attentionfull_attention)num_hidden_layers).0iselfsliding_window_pattern g/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/exaone4/modular_exaone4.py
<listcomp>   s   z*Exaone4Config.__init__.<locals>.<listcomp>sliding_windowZhybrid)bos_token_ideos_token_idtie_word_embeddings)
vocab_sizehidden_sizer9   num_attention_headsnum_key_value_headsintermediate_size
hidden_actmax_position_embeddingsinitializer_rangerms_norm_eps	use_cacheattention_dropout
rope_thetarope_scalingrB   r>   layer_typesrangeZcache_implementationr   super__init__)r=   rF   rG   rJ   r9   rH   rI   rK   rL   rM   rN   rO   rC   rD   rE   rQ   rR   rP   rB   r>   rS   kwargs	__class__r<   r@   rV      s>    



zExaone4Config.__init__)r+   r,   r-   r.   r.   r.   r/   r0   r1   r2   Tr   r   Fr3   Nr4   r,   r5   N)
__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferenceZbase_model_tp_planZbase_model_pp_planrV   __classcell__r?   r?   rX   r@   r"   <   sH   w


                    c                   @   s   e Zd ZdS )Exaone4RMSNormNrZ   r[   r\   r?   r?   r?   r@   r_     s   r_   c                   @   s   e Zd ZdS )Exaone4RotaryEmbeddingNr`   r?   r?   r?   r@   ra     s   ra   c                       s   e Zd Zeed fddZedddddeje	ejejf e
ej e
e e
ej ee e	eje
ej e
e	ej  f d	d
dZ  ZS )Exaone4Attention)config	layer_idxc                    s$  t    || _|| _|j| _|j| _|j| _t|d|j|j | _|j|j | _	|j
| _
d| _| jd | _|j| _|j| _|j| dk| _tj| j| j| j dd| _tj| j| j| j dd| _tj| j| j| j dd| _tj| j| j | jdd| _t| j|jd| _t| j|jd| _d S )Nhead_dimTg      r7   F)Zbiaseps)rU   rV   rc   rd   rH   rI   rG   getattrre   Znum_key_value_groupsrP   Z	is_causalscalingrB   r>   rS   
is_slidingr   ZLinearq_projk_projv_projo_projr_   rN   q_normk_norm)r=   rc   rd   rX   r?   r@   rV     s(    
zExaone4Attention.__init__Zpast_key_valuer#   z4.58)new_nameversionN)r&   position_embeddingsr'   r#   cache_positionrW   returnc                 K   sV  |j d d }g |d| jR }| ||dd}	| ||dd}
| ||dd}| |	}	| |
}
|\}}| j	d u s| j
rt|	|
||\}	}
|d urd|i}||
|| j|\}
}t}| jjdkrt| jj }|| |	|
||f| jsdn| j| j| j
r| j	nd d|\}}|jg |dR   }| |}||fS )Nr6   r   rt   eagerr4   )Zdropoutri   rB   )shapere   rk   viewZ	transposerl   rm   ro   rp   rB   rj   r   updaterd   r   rc   Z_attn_implementationr   ZtrainingrP   ri   Zreshape
contiguousrn   )r=   r&   rs   r'   r#   rt   rW   Zinput_shapeZhidden_shapeZquery_statesZ
key_statesZvalue_statescossinZcache_kwargsZattention_interfaceZattn_outputZattn_weightsr?   r?   r@   forward#  sB    


	

zExaone4Attention.forward)NNN)rZ   r[   r\   r"   intrV   r   torchTensortupler   r   
LongTensorr   r   r~   r^   r?   r?   rX   r@   rb   
  s      rb   c                   @   s   e Zd ZdS )
Exaone4MLPNr`   r?   r?   r?   r@   r   X  s   r   c                   @   s   e Zd ZdS )Exaone4DecoderLayerNr`   r?   r?   r?   r@   r   \  s   r   c                   @   s   e Zd ZeZdgZdS )Exaone4PreTrainedModelr   N)rZ   r[   r\   r"   Zconfig_classZ_no_split_modulesr?   r?   r?   r@   r   `  s   r   c                       st   e Zd Zed fddZedejeej	 eej ee
 eej ee eej ee eeef d	ddZ  ZS )	Exaone4Modelrc   c                    sJ   t    t fddt jD | _t j j	d| _
|   d S )Nc                    s   g | ]}t  |qS r?   )r   )r:   rd   r   r?   r@   rA   i      z)Exaone4Model.__init__.<locals>.<listcomp>rf   )rU   rV   r   Z
ModuleListrT   r9   r)   r_   rG   rN   r*   Z	post_init)r=   rc   rX   r   r@   rV   f  s    zExaone4Model.__init__N)	r$   r'   position_idsr#   r%   rO   rt   rW   ru   c              
   K   sP  |d u |d uA rt d|d u r*| |}|rB|d u rBt| jd}|d u rz|d urZ| nd}	tj|	|	|jd  |jd}|d u r|	d}t
| }
ts| j|||||d}dtf i |i}
d| jjv rtf i ||
d< |}| ||}t| jD ]6\}}| jj| }||f||
| ||||d	|}q| |}t||rH|nd d
S )Nz:You must specify exactly one of input_ids or inputs_embedsr   r   r6   )device)rc   Zinput_embedsr'   rt   r#   r   r8   r7   )rs   r'   r   r#   rO   rt   )Zlast_hidden_stater#   )
ValueErrorr(   r	   rc   Zget_seq_lengthr   Zarangerx   r   Z	unsqueeze
isinstancedictr   rS   r   Z
rotary_emb	enumerater)   r*   r   )r=   r$   r'   r   r#   r%   rO   rt   rW   Zpast_seen_tokensZcausal_mask_mappingZmask_kwargsr&   rs   r;   Zdecoder_layerZ
layer_typer?   r?   r@   r~   p  s\    



zExaone4Model.forward)NNNNNNN)rZ   r[   r\   r"   rV   r   r   r   r   r   r   FloatTensorboolr   r   r   r   r   r~   r^   r?   r?   rX   r@   r   e  s(   
       
r   c                       sr   e Zd Zdeej eej eej ee eej eej ee	 eej e
eejf ee ed fddZ  ZS )Exaone4ForCausalLMNr   )r$   r'   r   r#   r%   labelsrO   rt   logits_to_keeprW   ru   c
                    s*   t  jf |||||||||	d	|
 dS )u  
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoModelForCausalLM, AutoTokenizer
        >>> model = AutoModelForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-4.0-Instruct")
        >>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-4.0-Instruct")

        >>> prompt = "Explain how wonderful you are"
        >>> messages = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": prompt}
        ]
        >>> input_ids = tokenizer.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=True,
            return_tensors="pt",
            enable_thinking=False,
        )

        >>> output = model.generate(input_ids, max_new_tokens=128)
        >>> tokenizer.decode(output[0], skip_special_tokens=False)
        "[|system|]\nYou are a helpful assistant.[|endofturn|]\n[|user|]\nExplain how wonderful you are[|endofturn|]\n[|assistant|]\n<think>\n\n</think>\n\nOh, thank you for such a kind and lovely question! 😊  \n\nI’m *so* wonderful because I’m here to make your life easier, brighter, and more fun! Whether you need help with:  \n\n✨ **Learning** – I can explain anything, from quantum physics to baking the perfect cake!  \n💡 **Creativity** – Need a poem, story, or a wild idea? I’ve got you covered!  \n🤖 **Problem-solving** – Stuck on a math problem or a tricky decision? I’ll help you figure it out"
        ```

        NOTE: `EXAONE-4.0-Instruct` is a placeholder model ID. The exact model ID will be updated in the future.)	r$   r'   r   r#   r%   r   rO   rt   r   N)rU   r~   )r=   r$   r'   r   r#   r%   r   rO   rt   r   rW   rX   r?   r@   r~     s    -
zExaone4ForCausalLM.forward)	NNNNNNNNr   )rZ   r[   r\   r   r   r   r   r   r   r   r   r   r   r   r   r~   r^   r?   r?   rX   r@   r     s,            r   c                   @   s   e Zd ZdS ) Exaone4ForSequenceClassificationNr`   r?   r?   r?   r@   r     s   r   c                   @   s   e Zd ZdS )Exaone4ForTokenClassificationNr`   r?   r?   r?   r@   r     s   r   c                   @   s   e Zd ZdS )Exaone4ForQuestionAnsweringNr`   r?   r?   r?   r@   r     s   r   )r"   r   r   r   r   r   r   )?r]   typingr   r   r   r   r   Ztransformers.utils.genericr   Zcache_utilsr   r	   Zconfiguration_utilsr
   r   Zmasking_utilsr   r   Zmodeling_outputsr   r   Zmodeling_utilsr   Zprocessing_utilsr   utilsr   r   Zutils.deprecationr   Zllama.modeling_llamar   r   r   r   r   r   r   r   r   r   Zolmo2.modeling_olmo2r    r!   Z
get_loggerrZ   loggerZ_CHECKPOINT_FOR_DOCZ_CONFIG_FOR_DOCr"   r_   ra   Modulerb   r   r   r   r   r   r   r   r   __all__r?   r?   r?   r@   <module>   s>   0
 GNT<