a
    h(                     @   s>   d dl mZ ddlmZ ddlmZ G dd deZdgZdS )    )Optional   )PretrainedConfig)rope_config_validationc                       sz   e Zd ZdZdZdeee  eee  eee  eeeeeeeee	e
ee
e	e	eee	e	e	ee ee	e	d fddZ  ZS )EfficientLoFTRConfiga  
    This is the configuration class to store the configuration of a [`EffientLoFTRFromKeypointMatching`].
    It is used to instantiate a EfficientLoFTR model according to the specified arguments, defining the model
    architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
    EfficientLoFTR [zju-community/efficientloftr](https://huggingface.co/zju-community/efficientloftr) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        stage_num_blocks (`List`, *optional*, defaults to [1, 2, 4, 14]):
            The number of blocks in each stages
        out_features (`List`, *optional*, defaults to [64, 64, 128, 256]):
            The number of channels in each stage
        stage_stride (`List`, *optional*, defaults to [2, 1, 2, 2]):
            The stride used in each stage
        hidden_size (`int`, *optional*, defaults to 256):
            The dimension of the descriptors.
        activation_function (`str`, *optional*, defaults to `"relu"`):
            The activation function used in the backbone
        q_aggregation_kernel_size (`int`, *optional*, defaults to 4):
            The kernel size of the aggregation of query states in the fusion network
        kv_aggregation_kernel_size (`int`, *optional*, defaults to 4):
            The kernel size of the aggregation of key and value states in the fusion network
        q_aggregation_stride (`int`, *optional*, defaults to 4):
            The stride of the aggregation of query states in the fusion network
        kv_aggregation_stride (`int`, *optional*, defaults to 4):
            The stride of the aggregation of key and value states in the fusion network
        num_attention_layers (`int`, *optional*, defaults to 4):
            Number of attention layers in the LocalFeatureTransformer
        num_attention_heads (`int`, *optional*, defaults to 8):
            The number of heads in the GNN layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during attention.
        mlp_activation_function (`str`, *optional*, defaults to `"leaky_relu"`):
            Activation function used in the attention mlp layer.
        coarse_matching_skip_softmax (`bool`, *optional*, defaults to `False`):
            Whether to skip softmax or not at the coarse matching step.
        coarse_matching_threshold (`float`, *optional*, defaults to 0.2):
            The threshold for the minimum score required for a match.
        coarse_matching_temperature (`float`, *optional*, defaults to 0.1):
            The temperature to apply to the coarse similarity matrix
        coarse_matching_border_removal (`int`, *optional*, defaults to 2):
            The size of the border to remove during coarse matching
        fine_kernel_size (`int`, *optional*, defaults to 8):
            Kernel size used for the fine feature matching
        batch_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the batch normalization layers.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        partial_rotary_factor (`float`, *optional*, defaults to 4.0):
            Dim factor for the RoPE embeddings, in EfficientLoFTR, frequencies should be generated for
            the whole hidden_size, so this factor is used to compensate.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3', '2d'], with 'default' being the original RoPE implementation.
                `dim` (`int`): The dimension of the RoPE embeddings.
        fine_matching_slice_dim (`int`, *optional*, defaults to 8):
            The size of the slice used to divide the fine features for the first and second fine matching stages.
        fine_matching_regress_temperature (`float`, *optional*, defaults to 10.0):
            The temperature to apply to the fine similarity matrix
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

    Examples:
        ```python
        >>> from transformers import EfficientLoFTRConfig, EfficientLoFTRForKeypointMatching

        >>> # Initializing a EfficientLoFTR configuration
        >>> configuration = EfficientLoFTRConfig()

        >>> # Initializing a model from the EfficientLoFTR configuration
        >>> model = EfficientLoFTRForKeypointMatching(configuration)

        >>> # Accessing the model configuration
        >>> configuration = model.config
        ```
    ZefficientloftrN   relu              F
leaky_relu皙?皙?   h㈵>     @      @      $@{Gz?)stage_num_blocksout_featuresstage_stridehidden_sizeactivation_functionq_aggregation_kernel_sizekv_aggregation_kernel_sizeq_aggregation_stridekv_aggregation_stridenum_attention_layersnum_attention_headsattention_dropoutattention_biasmlp_activation_functioncoarse_matching_skip_softmaxcoarse_matching_thresholdcoarse_matching_temperaturecoarse_matching_border_removalfine_kernel_sizebatch_norm_eps
rope_thetapartial_rotary_factorrope_scalingfine_matching_slice_dim!fine_matching_regress_temperatureinitializer_rangec                    s  |d ur|ng d _ |d ur"|ng d _|d ur8|ng d _dg jd d   _dd t j j D  _ fddt j D  _ fd	dtt	 j D  _
tt jd d  _| _ j jd krtd
 j d jd  | _| _| _| _|	 _|
 _| _| _| _ jd  _| _| _| _| _| _| _| _ | _!| _"| _#| _$|d ur|nddi _%| _&t'  | _(t) j*f i | d S )N)   r   r	      )r   r/   r   r   )@   r1      r   r/   c                 S   s$   g | ]\}}|gd g|d    qS )r/    ).0Zstride
num_blocksr4   r4   {/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/efficientloftr/configuration_efficientloftr.py
<listcomp>   s   z1EfficientLoFTRConfig.__init__.<locals>.<listcomp>c                    s    g | ]\}} j | g| qS r4   )r   )r5   	stage_idxr6   selfr4   r7   r8      s   c                    s*   g | ]"} j | g j| d d  qS )Nr3   )stage_in_channelsstage_block_out_channels)r5   r9   r:   r4   r7   r8      s   zMhidden_size should be equal to the last value in out_features. hidden_size = z, out_features = r   Z	rope_typedefault)+r   r   r   r<   zipZstage_block_stride	enumerater=   rangelenZstage_block_in_channelslistreversedZfine_fusion_dimsr   
ValueErrorr   r   r   r   r   r   r   r    r!   Zintermediate_sizer"   r#   r$   r%   r&   r'   r(   r,   r-   Znum_key_value_headsr)   r+   r*   r   r.   super__init__)r;   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   kwargs	__class__r:   r7   rG   m   sZ    

zEfficientLoFTRConfig.__init__)NNNr   r   r	   r	   r	   r	   r	   r
   r   Fr   Fr   r   r   r
   r   r   r   Nr
   r   r   )__name__
__module____qualname____doc__Z
model_typer   rC   intstrfloatbooldictrG   __classcell__r4   r4   rI   r7   r      sp   V                          


r   N)typingr   Zconfiguration_utilsr   Zmodeling_rope_utilsr   r   __all__r4   r4   r4   r7   <module>   s
    4