a
    h`'                     @   s@   d dl mZmZ d dlmZ eeZG dd deZdgZ	dS )   )PretrainedConfiglayer_type_validation)loggingc                       sx   e Zd ZdZdZdgZdddddddddddddddd	d
ZdgdgfddgdgfdgdgfdZd% fd#d$	Z  Z	S )&Dots1Configa  
    This is the configuration class to store the configuration of a [`Dots1Model`]. It is used to instantiate a
    `dots.llm1` model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of
    [rednote-hilab/dots.llm1.base](https://huggingface.co/rednote-hilab/dots.llm1.base).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 152064):
            Vocabulary size of the model. Defines the number of different tokens that can be represented by the
            `input_ids` passed when calling [`Dots1Model`].
        hidden_size (`int`, *optional*, defaults to 4608):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 10944):
            Dimension of the MLP representations.
        moe_intermediate_size (`int`, *optional*, defaults to 1408):
            Dimension of the MoE representations.
        num_hidden_layers (`int`, *optional*, defaults to 62):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 32):
            Number of key/value heads for Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, Multi
            Head Attention (MHA) is used. If `num_key_value_heads=1`, Multi Query Attention (MQA) is used. Otherwise,
            Grouped Query Attention (GQA) is used. If not specified, defaults to `num_attention_heads`.
        n_shared_experts (`int`, *optional*, default=None):
            Number of shared experts. None means dense model.
        n_routed_experts (`int`, *optional*, default=None):
            Number of routed experts. None means dense model.
        n_group (`int`, *optional*, defaults to 1):
            Number of groups for routed experts.
        topk_group (`int`, *optional*, defaults to 1):
            Number of selected groups for each token (selected experts only within `topk_group` groups).
        num_experts_per_tok (`int`, *optional*, default=None):
            Number of selected experts. None means dense model.
        first_k_dense_replace (`int`, *optional*, defaults to 0):
            Number of dense layers at the beginning of the model before the first MoE layer.
        norm_topk_prob (`bool`, *optional*, defaults to `False`):
            Whether to normalize the weights of the routed experts.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string).
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            Maximum sequence length the model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            Standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            Epsilon used by the RMS normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions. Only relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie the input and output word embeddings.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`dict`, *optional*):
            Dictionary for scaling RoPE embeddings. Supports `{"type": strategy name, "factor": scaling factor}`.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the self-attention projections.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            Dropout ratio for the attention probabilities.
        routed_scaling_factor (`float`, *optional*, defaults to 1.0):
            Scaling factor for routed experts.
        sliding_window (`int`, *optional*, defaults to 4096):
            Size of the sliding window for attention. If not specified, defaults to `4096`.
        max_window_layers (`int`, *optional*, defaults to 62):
            The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
            additional layer afterwards will use SWA (Sliding Window Attention).
        layer_types (`list`, *optional*):
            Attention pattern for each layer.

    Examples:
        ```python
        >>> from transformers import Dots1Model, Dots1Config

        >>> # Initializing a Dots1 style configuration
        >>> configuration = Dots1Config()

        >>> # Accessing the model configuration
        >>> configuration = model.config
        ```
    Zdots1Zpast_key_valuesZcolwiseZrowwiseZlocal_colwiseZlocal_rowwiselocalZgather)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projz layers.*.mlp.experts.*.gate_projzlayers.*.mlp.experts.*.up_projz layers.*.mlp.experts.*.down_projzlayers.*.mlp.experts.*z%layers.*.mlp.shared_experts.gate_projz#layers.*.mlp.shared_experts.up_projz%layers.*.mlp.shared_experts.down_projzlayers.*.mlp.shared_expertszlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_projzlayers.*.mlpZ	input_idsZinputs_embedsZhidden_statesZattention_mask)Zembed_tokensZlayersZnorm R    *    >       N       Fsilu   {Gz?ư>T     @              ?   c                    s   | _ | _| _| _| _| _| _| _|	 _| _	| _
| _|d u rT|}|
 _| _| _| _| _| _| _| _| _| _| _| _| _| _| _ jd u r҇ fddt jD  _t j t jf d|i| d S )Nc                    s(   g | ] } j d ur | jkr dndqS )NZsliding_attentionZfull_attention)sliding_windowmax_window_layers).0iself i/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/dots1/configuration_dots1.py
<listcomp>   s   z(Dots1Config.__init__.<locals>.<listcomp>tie_word_embeddings)
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizemoe_intermediate_sizenum_hidden_layersnum_attention_headsn_shared_expertsn_routed_expertsnum_experts_per_tokfirst_k_dense_replacenorm_topk_probn_group
topk_groupnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_biasattention_dropoutrouted_scaling_factorr   r   layer_typesranger   super__init__)r   r!   r#   r$   r%   r&   r'   r/   r(   r)   r-   r.   r*   r+   r,   r0   r"   r1   r2   r3   r    r4   r5   r6   r7   r8   r   r   r9   kwargs	__class__r   r   r<      sN     



zDots1Config.__init__)r   r   r	   r
   r   r   r   NNr   r   Nr   Fr   r   r   r   TFr   NFr   r   r   r   N)
__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferenceZbase_model_tp_planZbase_model_pp_planr<   __classcell__r   r   r>   r   r      sj   S

                            r   N)
Zconfiguration_utilsr   r   utilsr   Z
get_loggerr@   loggerr   __all__r   r   r   r   <module>   s
   
 >