a
    ½ÀhÀ)  ã                   @   s6   d Z ddlmZ ddlmZ G dd„ deƒZdgZdS )zDiffLlama model configurationé   )ÚPretrainedConfig)Úrope_config_validationc                       s,   e Zd ZdZdZdgZd‡ fdd„	Z‡  ZS )ÚDiffLlamaConfigaô  
    This is the configuration class to store the configuration of a [`DiffLlamaModel`]. It is used to instantiate an DiffLlama
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults
    will yield a similar configuration to that of the [kajuma/DiffLlama-0.3B-handcut](https://huggingface.co/kajuma/DiffLlama-0.3B-handcut).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the DiffLlama model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`DiffLlamaModel`]
        hidden_size (`int`, *optional*, defaults to 2048):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 8192):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 16):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'diffllama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'diffllama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'diffllama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'diffllama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        lambda_std_dev (`float`, *optional*, defaults to 0.1):
            The standard deviation for initialization of parameter lambda in attention layer.
        head_dim (`int`, *optional*):
            The attention head dimension. If None, it will default to hidden_size // num_heads

    ```python
    >>> from transformers import DiffLlamaModel, DiffLlamaConfig

    >>> # Initializing a DiffLlama diffllama-7b style configuration
    >>> configuration = DiffLlamaConfig()

    >>> # Initializing a model from the diffllama-7b style configuration
    >>> model = DiffLlamaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Z	diffllamaZpast_key_valuesé }  é   é    é   é    NÚsiluç{®Gáz”?çñhãˆµøä>Té   é   Fç     ˆÃ@ç        çš™™™™™¹?c                    sÒ   || _ || _|| _|| _|| _|| _|d u r0|}|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|d urx|n
| j| j | _| jd urªd| jv rª| jd | jd< t| ƒ tƒ jf ||||dœ|¤Ž d S )NÚtypeZ	rope_type)Úpad_token_idÚbos_token_idÚeos_token_idÚtie_word_embeddings)Ú
vocab_sizeÚmax_position_embeddingsÚhidden_sizeÚintermediate_sizeÚnum_hidden_layersÚnum_attention_headsÚnum_key_value_headsÚ
hidden_actÚinitializer_rangeÚrms_norm_epsÚ	use_cacheÚ
rope_thetaÚrope_scalingÚattention_biasÚattention_dropoutÚlambda_std_devÚhead_dimr   ÚsuperÚ__init__)Úselfr   r   r   r   r   r   r   r   r   r    r!   r   r   r   r   r"   r#   r$   r%   r&   r'   Úkwargs©Ú	__class__© úq/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/diffllama/configuration_diffllama.pyr)   ‰   s<    üûzDiffLlamaConfig.__init__)r   r   r   r   r	   Nr
   r   r   r   TNr   r   Fr   NFr   r   N)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typeZkeys_to_ignore_at_inferencer)   Ú__classcell__r.   r.   r,   r/   r      s2   m                     êr   N)r3   Zconfiguration_utilsr   Zmodeling_rope_utilsr   r   Ú__all__r.   r.   r.   r/   Ú<module>   s
    0