a
    h^6                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ dd	lmZ d
dlmZ eeZG dd deZG dd de
ZddgZdS )zDETR model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging) verify_backbone_config_arguments   )CONFIG_MAPPINGc                "       sx   e Zd ZdZdZdgZdddZd& fdd	Zee	dddZ
ee	ddd Zed!d" Zeed#d$d%Z  ZS )'
DetrConfiga  
    This is the configuration class to store the configuration of a [`DetrModel`]. It is used to instantiate a DETR
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the DETR
    [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        use_timm_backbone (`bool`, *optional*, defaults to `True`):
            Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
            API.
        backbone_config (`PretrainedConfig` or `dict`, *optional*):
            The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
            case it will default to `ResNetConfig()`.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        num_queries (`int`, *optional*, defaults to 100):
            Number of object queries, i.e. detection slots. This is the maximal number of objects [`DetrModel`] can
            detect in a single image. For COCO, we recommend 100 queries.
        d_model (`int`, *optional*, defaults to 256):
            This parameter is a general dimension parameter, defining dimensions for components such as the encoder layer and projection parameters in the decoder layer, among others.
        encoder_layers (`int`, *optional*, defaults to 6):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 6):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 2048):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 2048):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        init_xavier_std (`float`, *optional*, defaults to 1):
            The scaling factor used for the Xavier initialization gain in the HM Attention map module.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://huggingface.co/papers/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://huggingface.co/papers/1909.11556)
            for more details.
        auxiliary_loss (`bool`, *optional*, defaults to `False`):
            Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
        position_embedding_type (`str`, *optional*, defaults to `"sine"`):
            Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
        backbone (`str`, *optional*, defaults to `"resnet50"`):
            Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
            will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
            is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
        use_pretrained_backbone (`bool`, *optional*, `True`):
            Whether to use pretrained weights for the backbone.
        backbone_kwargs (`dict`, *optional*):
            Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
            e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
        dilation (`bool`, *optional*, defaults to `False`):
            Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
            `use_timm_backbone` = `True`.
        class_cost (`float`, *optional*, defaults to 1):
            Relative weight of the classification error in the Hungarian matching cost.
        bbox_cost (`float`, *optional*, defaults to 5):
            Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
        giou_cost (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
        mask_loss_coefficient (`float`, *optional*, defaults to 1):
            Relative weight of the Focal loss in the panoptic segmentation loss.
        dice_loss_coefficient (`float`, *optional*, defaults to 1):
            Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
        bbox_loss_coefficient (`float`, *optional*, defaults to 5):
            Relative weight of the L1 bounding box loss in the object detection loss.
        giou_loss_coefficient (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss in the object detection loss.
        eos_coefficient (`float`, *optional*, defaults to 0.1):
            Relative classification weight of the 'no-object' class in the object detection loss.

    Examples:

    ```python
    >>> from transformers import DetrConfig, DetrModel

    >>> # Initializing a DETR facebook/detr-resnet-50 style configuration
    >>> configuration = DetrConfig()

    >>> # Initializing a model (with random weights) from the facebook/detr-resnet-50 style configuration
    >>> model = DetrModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZdetrZpast_key_valuesd_modelencoder_attention_heads)hidden_sizenum_attention_headsTNr   d                    relu   皙?{Gz?      ?Fsineresnet50      r   c#           &         s  |r2|d u r2i }|rd|d< g d|d< ||d< n^|s|dv r|d u rbt d td d	gd
}n&t|tr|d}$t|$ }%|%|}d }d }t|||||d || _|| _	|| _
|| _|| _|| _|| _|| _|	| _|| _|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _ || _!|| _"|| _#|| _$|| _%|| _&| | _'|!| _(|"| _)t* j+f d|i|# d S )N   Zoutput_stride)r   r   r      Zout_indicesZin_chans)Nr   zX`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.ZresnetZstage4)Zout_features
model_type)use_timm_backboneuse_pretrained_backbonebackbonebackbone_configbackbone_kwargsis_encoder_decoder),loggerinfor   
isinstancedictget	from_dictr
   r#   r&   num_channelsnum_queriesr   encoder_ffn_dimencoder_layersr   decoder_ffn_dimdecoder_layersdecoder_attention_headsdropoutattention_dropoutactivation_dropoutactivation_functioninit_stdinit_xavier_stdencoder_layerdropdecoder_layerdropZnum_hidden_layersauxiliary_lossposition_embedding_typer%   r$   r'   dilation
class_cost	bbox_cost	giou_costmask_loss_coefficientdice_loss_coefficientbbox_loss_coefficientgiou_loss_coefficienteos_coefficientsuper__init__)&selfr#   r&   r/   r0   r2   r1   r   r4   r3   r5   r<   r=   r(   r9   r   r6   r7   r8   r:   r;   r>   r?   r%   r$   r'   r@   rA   rB   rC   rD   rE   rF   rG   rH   kwargsZbackbone_model_typeZconfig_class	__class__ g/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/detr/configuration_detr.pyrJ      st    (




zDetrConfig.__init__returnc                 C   s   | j S N)r   rK   rO   rO   rP   r      s    zDetrConfig.num_attention_headsc                 C   s   | j S rS   )r   rT   rO   rO   rP   r      s    zDetrConfig.hidden_sizec                 C   s"   t | dd d urdt| jiS i S )Nr&   )getattrtyper&   rT   rO   rO   rP   sub_configs   s    zDetrConfig.sub_configs)r&   c                 K   s   | f d|i|S )a-  Instantiate a [`DetrConfig`] (or a derived class) from a pre-trained backbone model configuration.

        Args:
            backbone_config ([`PretrainedConfig`]):
                The backbone configuration.
        Returns:
            [`DetrConfig`]: An instance of a configuration object
        r&   rO   )clsr&   rL   rO   rO   rP   from_backbone_config  s    
zDetrConfig.from_backbone_config)"TNr   r   r   r   r   r   r   r   r   r   Tr   r   r   r   r   r   r   Fr   r   TNFr   r   r   r   r   r   r   r   )__name__
__module____qualname____doc__r"   Zkeys_to_ignore_at_inferenceZattribute_maprJ   propertyintr   r   rW   classmethodr   rY   __classcell__rO   rO   rM   rP   r       sb   f                                  i
r   c                   @   s\   e Zd ZedZeeeee	ef f dddZ
eedddZee	dddZd	S )
DetrOnnxConfigz1.11rQ   c                 C   s"   t ddddddfdddifgS )	NZpixel_valuesbatchr/   heightwidth)r   r   r   r   Z
pixel_maskr   r   rT   rO   rO   rP   inputs  s
    
zDetrOnnxConfig.inputsc                 C   s   dS )Ngh㈵>rO   rT   rO   rO   rP   atol_for_validation   s    z"DetrOnnxConfig.atol_for_validationc                 C   s   dS )N   rO   rT   rO   rO   rP   default_onnx_opset$  s    z!DetrOnnxConfig.default_onnx_opsetN)rZ   r[   r\   r   parseZtorch_onnx_minimum_versionr^   r   strr_   rf   floatrg   ri   rO   rO   rO   rP   rb     s   
 rb   N)r]   collectionsr   collections.abcr   	packagingr   Zconfiguration_utilsr   Zonnxr   utilsr	   Zutils.backbone_utilsr
   autor   Z
get_loggerrZ   r)   r   rb   __all__rO   rO   rO   rP   <module>   s   
 u