a
    h@#                     @   s   d Z ddlmZ ddlmZ ddlmZmZmZm	Z	 ddl
mZ ddlmZ ddlmZ erpdd	lmZmZmZ eeZG d
d deZG dd deZddgZdS )zDeBERTa model configuration    )OrderedDict)Mapping)TYPE_CHECKINGAnyOptionalUnion   )PretrainedConfig)
OnnxConfig)logging)FeatureExtractionMixinPreTrainedTokenizerBase
TensorTypec                       s&   e Zd ZdZdZd fdd	Z  ZS )DebertaConfigaL  
    This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is
    used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa
    [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Arguments:
        vocab_size (`int`, *optional*, defaults to 50265):
            Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"`
            are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 0):
            The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        relative_attention (`bool`, *optional*, defaults to `False`):
            Whether use relative position encoding.
        max_relative_positions (`int`, *optional*, defaults to 1):
            The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value
            as `max_position_embeddings`.
        pad_token_id (`int`, *optional*, defaults to 0):
            The value used to pad input_ids.
        position_biased_input (`bool`, *optional*, defaults to `True`):
            Whether add absolute position embedding to content embedding.
        pos_att_type (`list[str]`, *optional*):
            The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`,
            `["p2c", "c2p"]`.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        legacy (`bool`, *optional*, defaults to `True`):
            Whether or not the model should use the legacy `LegacyDebertaOnlyMLMHead`, which does not work properly
            for mask infilling tasks.

    Example:

    ```python
    >>> from transformers import DebertaConfig, DebertaModel

    >>> # Initializing a DeBERTa microsoft/deberta-base style configuration
    >>> configuration = DebertaConfig()

    >>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration
    >>> model = DebertaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZdebertaY           gelu皙?   r   {Gz?Hz>FTNc                    s   t  jf i | || _|| _|| _|| _|| _|| _|| _|	| _	|
| _
|| _|| _|| _|| _|| _t|trdd | dD }|| _|| _|| _|d|| _|| _|| _|| _d S )Nc                 S   s   g | ]}|  qS  )strip).0xr   r   m/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/deberta/configuration_deberta.py
<listcomp>       z*DebertaConfig.__init__.<locals>.<listcomp>|pooler_hidden_size)super__init__hidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangerelative_attentionmax_relative_positionspad_token_idposition_biased_input
isinstancestrlowersplitpos_att_type
vocab_sizelayer_norm_epsgetr"   pooler_dropoutpooler_hidden_actlegacy)selfr8   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r9   r/   r0   r1   r2   r7   r;   r<   r=   kwargs	__class__r   r   r$   k   s0    
zDebertaConfig.__init__)r   r   r   r   r   r   r   r   r   r   r   r   Fr   r   TNr   r   T)__name__
__module____qualname____doc__Z
model_typer$   __classcell__r   r   r@   r   r   !   s.   G                    r   c                       s|   e Zd Zeeeeeef f dddZeedddZde	d eeee
ed eeedeeef d fddZ  ZS )DebertaOnnxConfig)returnc                 C   s`   | j dkrdddd}n
ddd}| jjdkrHtd|fd	|fd
|fgS td|fd	|fgS d S )Nzmultiple-choicebatchchoicesequence)r         )r   rL   r   Z	input_idsZattention_masktoken_type_ids)task_configr-   r   )r>   Zdynamic_axisr   r   r   inputs   s    

zDebertaOnnxConfig.inputsc                 C   s   dS )Nr   r   )r>   r   r   r   default_onnx_opset   s    z$DebertaOnnxConfig.default_onnx_opsetr   FNr   (   )r   r   r   r   )preprocessor
batch_size
seq_lengthnum_choicesis_pair	frameworknum_channelsimage_widthimage_height	tokenizerrH   c                    s.   t  j||d}| jjdkr*d|v r*|d= |S )N)rT   rY   r   rN   )r#   generate_dummy_inputsrP   r-   )r>   rT   rU   rV   rW   rX   rY   rZ   r[   r\   r]   Zdummy_inputsr@   r   r   r^      s    z'DebertaOnnxConfig.generate_dummy_inputs)	r   r   r   FNr   rS   rS   N)rB   rC   rD   propertyr   r4   intrQ   rR   r   boolr   r   r^   rF   r   r   r@   r   rG      s4             
rG   N)rE   collectionsr   collections.abcr   typingr   r   r   r   Zconfiguration_utilsr	   Zonnxr
   utilsr    r   r   r   Z
get_loggerrB   loggerr   rG   __all__r   r   r   r   <module>   s   
 %