a
    hI                     @   sb   d Z ddlmZ ddlmZ eeZG dd deZG dd deZ	G dd	 d	eZ
g d
ZdS )zCLIPSeg model configuration   )PretrainedConfig)loggingc                       s*   e Zd ZdZdZdZd fdd	Z  ZS )CLIPSegTextConfiga  
    This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
    CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`CLIPSegModel`].
        hidden_size (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 77):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 49406):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 49407):
            End of stream token id.

    Example:

    ```python
    >>> from transformers import CLIPSegTextConfig, CLIPSegTextModel

    >>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegTextConfig()

    >>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zclipseg_text_modeltext_config               M   
quick_geluh㈵>        {Gz?      ?       c                    s`   t  jf |||d| || _|| _|| _|| _|| _|| _|| _|| _	|
| _
|| _|	| _d S )N)pad_token_idbos_token_ideos_token_id)super__init__
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddingslayer_norm_eps
hidden_actinitializer_rangeinitializer_factorattention_dropout)selfr   r   r   r   r   r   r    r   r#   r!   r"   r   r   r   kwargs	__class__ m/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/clipseg/configuration_clipseg.pyr   V   s    zCLIPSegTextConfig.__init__)r   r   r   r	   r
   r   r   r   r   r   r   r   r   r   __name__
__module____qualname____doc__
model_typeZbase_config_keyr   __classcell__r(   r(   r&   r)   r      s$   :              r   c                       s*   e Zd ZdZdZdZd fdd	Z  ZS )CLIPSegVisionConfigaG  
    This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
    CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel

    >>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegVisionConfig()

    >>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zclipseg_vision_modelvision_config      r	   r          r   r   r   r   r   c                    s^   t  jf i | || _|| _|| _|| _|| _|| _|| _|| _	|| _
|
| _|	| _|| _d S )N)r   r   r   r   r   r   num_channels
patch_size
image_sizer!   r"   r#   r   r    )r$   r   r   r   r   r7   r9   r8   r    r   r#   r!   r"   r%   r&   r(   r)   r      s    zCLIPSegVisionConfig.__init__)r3   r4   r	   r	   r   r5   r6   r   r   r   r   r   r*   r(   r(   r&   r)   r1   w   s    4            r1   c                       sL   e Zd ZdZdZeedZddddg ddd	d
ddddf fdd	Z  Z	S )CLIPSegConfiga  
    [`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to
    instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`CLIPSegTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original CLIPSeg implementation.
        extract_layers (`list[int]`, *optional*, defaults to `[3, 6, 9]`):
            Layers to extract when forwarding the query image through the frozen visual backbone of CLIP.
        reduce_dim (`int`, *optional*, defaults to 64):
            Dimensionality to reduce the CLIP vision embedding.
        decoder_num_attention_heads (`int`, *optional*, defaults to 4):
            Number of attention heads in the decoder of CLIPSeg.
        decoder_attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        decoder_intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder.
        conditional_layer (`int`, *optional*, defaults to 0):
            The layer to use of the Transformer encoder whose activations will be combined with the condition
            embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used.
        use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`):
            Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained
            segmentation.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import CLIPSegConfig, CLIPSegModel

    >>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegConfig()

    >>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig

    >>> # Initializing a CLIPSegText and CLIPSegVision configuration
    >>> config_text = CLIPSegTextConfig()
    >>> config_vision = CLIPSegVisionConfig()

    >>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision)
    ```Zclipseg)r   r2   Nr   g/L
F@)r      	   @      r   r   r       Fc                    s  | dd }| dd }t jf i | |d ur|d u r>i }tf i | }| D ]V\}}||v rX||| krX|dvrX||v rd| d| d}nd| d}t| qX|| |d urz|d u ri }t	f i | }d	|v rd
d |d	  D |d	< | D ]`\}}||v r||| kr|dvr||v rVd| d| d}nd| d}t| q|| |d u ri }td |d u ri }td tf i || _
t	f i || _|| _|| _|| _|| _|| _|| _|	| _|
| _|| _d| _|| _d S )Ntext_config_dictvision_config_dict)Ztransformers_version`zp` is found in both `text_config_dict` and `text_config` but with different values. The value `text_config_dict["z"]` will be used instead.zm`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The value `text_config["z"]` will be overridden.Zid2labelc                 S   s   i | ]\}}t ||qS r(   )str).0keyvaluer(   r(   r)   
<dictcomp>P  s   z*CLIPSegConfig.__init__.<locals>.<dictcomp>zv` is found in both `vision_config_dict` and `vision_config` but with different values. The value `vision_config_dict["zs`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. The value `vision_config["zR`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.zV`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.r   )popr   r   r   to_dictitemsloggerinfoupdater1   r   r2   projection_dimlogit_scale_init_valueextract_layers
reduce_dimdecoder_num_attention_headsdecoder_attention_dropoutdecoder_hidden_actdecoder_intermediate_sizeconditional_layerr"   "use_complex_transposed_convolution)r$   r   r2   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   r%   r@   rA   Z_text_config_dictrE   rF   messageZ_vision_config_dictr&   r(   r)   r     sx    




"





zCLIPSegConfig.__init__)
r+   r,   r-   r.   r/   r   r1   Zsub_configsr   r0   r(   r(   r&   r)   r:      s    ?
r:   )r:   r   r1   N)r.   Zconfiguration_utilsr   utilsr   Z
get_loggerr+   rK   r   r1   r:   __all__r(   r(   r(   r)   <module>   s   
_X 2