a
    h#                     @   s   d Z ddlmZmZ ddlZddlmZ ddlm	Z	 ddl
mZmZmZmZmZ ddlmZmZ G d	d
 d
eddZG dd deddZG dd deZdgZdS )z 
Processor class for Chameleon.
    )OptionalUnionN   )BatchFeature)
ImageInput)MultiModalDataProcessingKwargsProcessorMixin
TextKwargsUnpack)PreTokenizedInput	TextInputc                   @   s   e Zd ZU eed< dS )ChameleonTextKwargsreturn_for_text_completionN)__name__
__module____qualname__bool__annotations__ r   r   n/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/chameleon/processing_chameleon.pyr   #   s   
r   F)totalc                   @   s,   e Zd ZU eed< ddddddidZdS )ChameleonProcessorKwargstext_kwargsF)paddingr   return_mm_token_type_idsreturn_tensorspt)r   Zcommon_kwargsN)r   r   r   r   r   	_defaultsr   r   r   r   r   '   s   
r   c                	       sz   e Zd ZdZddgZdZdZdeed fd	d
Z	de
e e
eeeee ee f  ee edddZdddZ  ZS )ChameleonProcessora/  
    Constructs a Chameleon processor which wraps a Chameleon image processor and a Chameleon tokenizer into a single
    processor.

    [`ChameleonProcessor`] offers all the functionalities of [`ChameleonImageProcessor`] and [`LlamaTokenizerFast`].
    See the [`~ChameleonProcessor.__call__`] and [`~ChameleonProcessor.decode`] for more information.

    Args:
        image_processor ([`ChameleonImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerFast`]):
            The tokenizer is a required input.
        image_seq_length (`int`, *optional*, defaults to 1024):
            Sequence length of one image embedding.
        image_token (`str`, *optional*, defaults to `"<image>"`):
            The special token used to indicate image in the text.
    image_processor	tokenizer)ZLlamaTokenizerZLlamaTokenizerFastZChameleonImageProcessor   <image>)image_seq_lengthimage_tokenc                    s   || _ t|dr|jn|| _|| j| _t|dr:|jnd| _t|drP|jnd| _|| j| _|| j| _	|| j| _
| j| j	| j
g| _t || d S )Nr%   	boi_tokenz<racm3:break>	eoi_tokenz<eoss>)r$   hasattrr%   Zconvert_tokens_to_idsZimage_token_idr&   image_start_tokenr'   image_end_tokenZimage_start_token_idZimage_end_token_id	image_idssuper__init__)selfr    r!   r$   r%   	__class__r   r   r-   L   s    zChameleonProcessor.__init__N)imagestextkwargsreturnc                 K   s  t |tr|g}n t |ts2t |d ts2td|du rJ|du rJtd| jtfd| jji|}|d 	dd}g }| j
| j| j  | j }	|D ],}
|
| j|	}
|s|
| jj7 }
||
 qi }|dur| j|fi |d	 }|d 	d
d}|d 	dd}| j|fi |d d
di}| j||dgd |rtt|d }t|d }d|t|| j< | |d< ti |||dS )a  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `list[str]`, `list[list[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        r   zAInvalid input text. Please provide a string, or a list of stringsNz&You must provide either text or imagesZtokenizer_init_kwargsr   r   FZimages_kwargsr   r   image)Z
modalitiesZ	input_ids   mm_token_type_ids)dataZtensor_type)
isinstancestrlist	TypeError
ValueErrorZ_merge_kwargsr   r!   Zinit_kwargspopr)   r%   r$   r*   replaceZ	sep_tokenappendr    Z_check_special_mm_tokensnparrayZ
zeros_likeisinr+   tolistr   )r.   r1   r2   ZaudioZvideosr3   Zoutput_kwargsr   Zprompt_stringsZone_img_tokenssampleZimage_inputsr   r   Ztext_inputsZ	array_idsr7   r   r   r   __call__[   sD    )
zChameleonProcessor.__call__c                 K   sL   i }|dur>| j d gt| }dgt| }|||d tf i |S )a  
        Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.

        Args:
            image_sizes (`list[list[int]]`, *optional*):
                The input sizes formatted as (height, width) per each image.

        Returns:
            `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
            input modalities, along with other useful data.
        N   r6   )num_image_tokensnum_image_patches)r$   lenupdater   )r.   Zimage_sizesr3   Zvision_datarH   rI   r   r   r   _get_num_multimodal_tokens   s    z-ChameleonProcessor._get_num_multimodal_tokens)r"   r#   )NNNN)N)r   r   r   __doc__
attributesZtokenizer_classZimage_processor_classintr:   r-   r   r   r   r   r   r;   r   r   r   rF   rL   __classcell__r   r   r/   r   r   5   s        Qr   )rM   typingr   r   numpyrA   Zfeature_extraction_utilsr   Zimage_utilsr   Zprocessing_utilsr   r   r	   r
   r   Ztokenization_utils_baser   r   r   r   r   __all__r   r   r   r   <module>   s    