a
    ½ÀhP8  ã                   @   sb   d Z ddlmZ ddlmZ e e¡ZG dd„ deƒZG dd„ deƒZ	G dd	„ d	eƒZ
g d
¢ZdS )zBridgeTower model configurationé   )ÚPretrainedConfig)Úloggingc                
       s*   e Zd ZdZdZdZd‡ fdd„	Z‡  ZS )ÚBridgeTowerVisionConfigaÇ  
    This is the configuration class to store the vision configuration of a [`BridgeTowerModel`]. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the bridgetower-base
    [BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in visual encoder model.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        image_size (`int`, *optional*, defaults to 288):
            The size (resolution) of each image.
        initializer_factor (`float`, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        stop_gradient (`bool`, *optional*, defaults to `False`):
            Whether to stop gradient for training.
        share_layernorm (`bool`, *optional*, defaults to `True`):
            Whether LayerNorm layers are shared.
        remove_last_layer (`bool`, *optional*, defaults to `False`):
            Whether to remove the last layer from the vision encoder.


    Example:

    ```python
    >>> from transformers import BridgeTowerVisionConfig

    >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the vision model
    >>> configuration = BridgeTowerVisionConfig()

    >>> # Accessing the configuration
    >>> configuration
    ```Zbridgetower_vision_modelÚvision_configé   é   r   é   é   é   çñhãˆµøä>FTc                    sR   t ƒ jf i |¤Ž || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _d S ©N)ÚsuperÚ__init__Úhidden_sizeÚnum_hidden_layersÚnum_channelsÚ
patch_sizeÚ
image_sizeÚinitializer_factorÚlayer_norm_epsÚstop_gradientÚshare_layernormÚremove_last_layer)Úselfr   r   r   r   r   r   r   r   r   r   Úkwargs©Ú	__class__© úu/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/bridgetower/configuration_bridgetower.pyr   F   s    z BridgeTowerVisionConfig.__init__)
r   r   r   r   r	   r
   r   FTF©Ú__name__Ú
__module__Ú__qualname__Ú__doc__Ú
model_typeZbase_config_keyr   Ú__classcell__r   r   r   r   r      s   *          õr   c                       s*   e Zd ZdZdZdZd‡ fdd„	Z‡  ZS )ÚBridgeTowerTextConfiga´  
    This is the configuration class to store the text configuration of a [`BridgeTowerModel`]. The default values here
    are copied from RoBERTa. Instantiating a configuration with the defaults will yield a similar configuration to that
    of the bridgetower-base [BridegTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 50265):
            Vocabulary size of the text part of the model. Defines the number of different tokens that can be
            represented by the `inputs_ids` passed when calling [`BridgeTowerModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 514):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids`.
        initializer_factor (`float`, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://huggingface.co/papers/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://huggingface.co/papers/2009.13658).
        is_decoder (`bool`, *optional*, defaults to `False`):
            Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.

    Example:

    ```python
    >>> from transformers import BridgeTowerTextConfig

    >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the text model
    >>> configuration = BridgeTowerTextConfig()

    >>> # Accessing the configuration
    >>> configuration
    ```Zbridgetower_text_modelÚtext_configéYÄ  r   r   r
   é   Úgeluçš™™™™™¹?é  r   é    é   ÚabsoluteTc                    s|   t ƒ jf i |¤Ž || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _d S r   )r   r   Ú
vocab_sizer   r   Únum_attention_headsÚ
hidden_actr   Úintermediate_sizeÚhidden_dropout_probÚattention_probs_dropout_probÚmax_position_embeddingsÚtype_vocab_sizer   Úposition_embedding_typeÚ	use_cacheÚpad_token_idÚbos_token_idÚeos_token_id)r   r0   r   r   r1   r   r3   r2   r4   r5   r6   r7   r   r:   r;   r<   r8   r9   r   r   r   r   r   £   s$    zBridgeTowerTextConfig.__init__)r(   r   r   r   r
   r)   r*   r+   r+   r,   r
   r   r
   r-   r.   r/   Tr   r   r   r   r   r&   a   s*   >                 îr&   c                       s0   e Zd ZdZdZeedœZd‡ fdd„	Z‡  Z	S )ÚBridgeTowerConfiga~  
    This is the configuration class to store the configuration of a [`BridgeTowerModel`]. It is used to instantiate a
    BridgeTower model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the bridgetower-base
    [BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        share_cross_modal_transformer_layers (`bool`, *optional*, defaults to `True`):
            Whether cross modal transformer layers are shared.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        initializer_factor (`float`, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        share_link_tower_layers (`bool`, *optional*, defaults to `False`):
            Whether the bride/link tower layers are shared.
        link_tower_type (`str`, *optional*, defaults to `"add"`):
            Type of the bridge/link layer.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 6):
            Number of hidden layers in the Transformer encoder.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie input and output embeddings.
        init_layernorm_from_vision_encoder (`bool`, *optional*, defaults to `False`):
            Whether to init LayerNorm from the vision encoder.
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`BridgeTowerTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`BridgeTowerVisionConfig`].

    Example:

    ```python
    >>> from transformers import BridgeTowerModel, BridgeTowerConfig

    >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration
    >>> configuration = BridgeTowerConfig()

    >>> # Initializing a model from the BridgeTower/bridgetower-base style configuration
    >>> model = BridgeTowerModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zbridgetower)r'   r   Tr*   r   r
   r   FÚaddr   é   Nc                    s¼   |  dd ¡}|  dd ¡}tƒ jf i |¤Ž || _|| _|| _|| _|| _|| _|| _	|| _
|	| _|
| _|| _|d u r‚i }t d¡ |d u r˜i }t d¡ tf i |¤Ž| _tf i |¤Ž| _d S )NZtext_config_dictZvision_config_dictzV`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.zZ`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.)Úpopr   r   Ú$share_cross_modal_transformer_layersr2   r   r   r   Úshare_link_tower_layersÚlink_tower_typer1   r   Útie_word_embeddingsÚ"init_layernorm_from_vision_encoderÚloggerÚinfor&   r'   r   r   )r   rA   r2   r   r   r   rB   rC   r1   r   rD   rE   r'   r   r   Ú_r   r   r   r     s,    

zBridgeTowerConfig.__init__)Tr*   r   r
   r   Fr>   r   r?   FFNN)
r    r!   r"   r#   r$   r&   r   Zsub_configsr   r%   r   r   r   r   r=   Í   s"   5
             òr=   )r=   r&   r   N)r#   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr    rF   r   r&   r=   Ú__all__r   r   r   r   Ú<module>   s   
Ilg