a
    ½Àh^8  ã                   @   sb   d Z ddlmZ ddlmZ e e¡ZG dd„ deƒZG dd„ deƒZ	G dd	„ d	eƒZ
g d
¢ZdS )zBlip model configurationé   )ÚPretrainedConfig)Úloggingc                       s*   e Zd ZdZdZdZd‡ fdd„	Z‡  ZS )ÚBlipTextConfiga½  
    This is the configuration class to store the configuration of a [`BlipTextModel`]. It is used to instantiate a BLIP
    text model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the `BlipText` used by the [base
    architectures](https://huggingface.co/Salesforce/blip-vqa-base).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30524):
            Vocabulary size of the `Blip` text model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`BlipModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        encoder_hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers from the vision model.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        bos_token_id (`int`, *optional*, defaults to 30522):
            The id of the `beginning-of-sequence` token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the `end-of-sequence` token.
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the `padding` token.
        sep_token_id (`int`, *optional*, defaults to 102):
            The id of the `separator` token.
        is_decoder (`bool`, *optional*, defaults to `True`):
            Whether the model is used as a decoder.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        label_smoothing (float, *optional*):
            A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets
            become a mixture of the original ground truth and a uniform distribution as described in
            `Rethinking the Inception Architecture for Computer Vision <https://huggingface.co/papers/1512.00567>`__. Default: :math:`0.0`.

    Example:

    ```python
    >>> from transformers import BlipTextConfig, BlipTextModel

    >>> # Initializing a BlipTextConfig with Salesforce/blip-vqa-base style configuration
    >>> configuration = BlipTextConfig()

    >>> # Initializing a BlipTextModel (with random weights) from the Salesforce/blip-vqa-base style configuration
    >>> model = BlipTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zblip_text_modelÚtext_configé<w  é   é   é   é   é   Úgeluçê-™—q=ç        ç{®Gáz”?é:w  é   é    éf   Tc                    s€   t ƒ jf ||||dœ|¤Ž || _|| _|| _|| _|| _|| _|| _|| _	|| _
|
| _|	| _|| _|| _|| _|| _|| _d S )N)Úpad_token_idÚbos_token_idÚeos_token_idÚsep_token_id)ÚsuperÚ__init__Ú
vocab_sizeÚhidden_sizeÚencoder_hidden_sizeÚintermediate_sizeÚprojection_dimÚhidden_dropout_probÚnum_hidden_layersÚnum_attention_headsÚmax_position_embeddingsÚlayer_norm_epsÚ
hidden_actÚinitializer_rangeÚattention_probs_dropout_probÚ
is_decoderÚ	use_cacheÚlabel_smoothing)Úselfr   r   r   r   r   r    r!   r"   r$   r#   r   r&   r%   r   r   r   r   r'   r(   r)   Úkwargs©Ú	__class__© úg/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/blip/configuration_blip.pyr   b   s0    üûzBlipTextConfig.__init__)r   r   r   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   TTr   ©Ú__name__Ú
__module__Ú__qualname__Ú__doc__Ú
model_typeZbase_config_keyr   Ú__classcell__r.   r.   r,   r/   r      s0   F                    ër   c                       s*   e Zd ZdZdZdZd‡ fdd„	Z‡  ZS )ÚBlipVisionConfiga
  
    This is the configuration class to store the configuration of a [`BlipVisionModel`]. It is used to instantiate a
    BLIP vision model according to the specified arguments, defining the model architecture. Instantiating a
    configuration defaults will yield a similar configuration to that of the Blip-base
    [Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        image_size (`int`, *optional*, defaults to 384):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 1e-10):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

    Example:

    ```python
    >>> from transformers import BlipVisionConfig, BlipVisionModel

    >>> # Initializing a BlipVisionConfig with Salesforce/blip-vqa-base style configuration
    >>> configuration = BlipVisionConfig()

    >>> # Initializing a BlipVisionModel (with random weights) from the Salesforce/blip-vqa-base style configuration
    >>> model = BlipVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zblip_vision_modelÚvision_configr   r   r   r	   é€  é   r   çñhãˆµøä>r   ç»½×Ùß|Û=c                    sX   t ƒ jf i |¤Ž || _|| _|| _|| _|| _|| _|| _|| _	|
| _
|	| _|| _d S )N)r   r   r   r   r   r    r!   Ú
patch_sizeÚ
image_sizer%   Úattention_dropoutr#   r$   )r*   r   r   r   r    r!   r>   r=   r$   r#   r?   r%   r+   r,   r.   r/   r   È   s    zBlipVisionConfig.__init__)r   r   r   r	   r	   r9   r:   r   r;   r   r<   r0   r.   r.   r,   r/   r7   ”   s   0           ôr7   c                       s0   e Zd ZdZdZeedœZd‡ fd	d
„	Z‡  Z	S )Ú
BlipConfigaW
  
    [`BlipConfig`] is the configuration class to store the configuration of a [`BlipModel`]. It is used to instantiate
    a BLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
    a configuration with the defaults will yield a similar configuration to that of the BLIP-base
    [Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`BlipTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`BlipVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original BLIP implementation.
        image_text_hidden_size (`int`, *optional*, defaults to 256):
            Dimensionality of the hidden state of the image-text fusion layer.
        label_smoothing (float, optional, *optional*, defaults to 0.0):
            A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets
            become a mixture of the original ground truth and a uniform distribution as described in
            `Rethinking the Inception Architecture for Computer Vision <https://huggingface.co/papers/1512.00567>`__. Default: :math:`0.0`.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import BlipConfig, BlipModel

    >>> # Initializing a BlipConfig with Salesforce/blip-vqa-base style configuration
    >>> configuration = BlipConfig()

    >>> # Initializing a BlipPModel (with random weights) from the Salesforce/blip-vqa-base style configuration
    >>> model = BlipModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a BlipConfig from a BlipTextConfig and a BlipVisionConfig

    >>> # Initializing a BLIPText and BLIPVision configuration
    >>> config_text = BlipTextConfig()
    >>> config_vision = BlipVisionConfig()

    >>> config = BlipConfig.from_text_vision_configs(config_text, config_vision)
    ```Zblip)r   r8   Nr   çƒ/L¦
F@é   r   c                    s’   t ƒ jf i |¤Ž |d u r(i }t d¡ |d u r>i }t d¡ tf i |¤Ž| _tf i |¤Ž| _| jj| j_	|| _
|| _d| _d| _|| _|| _d S )NzO`text_config` is `None`. Initializing the `BlipTextConfig` with default values.zS`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.g      ð?r   )r   r   ÚloggerÚinfor   r   r7   r8   r   r   r   Úlogit_scale_init_valueZinitializer_factorr%   Úimage_text_hidden_sizer)   )r*   r   r8   r   rE   rF   r)   r+   r,   r.   r/   r     s     


zBlipConfig.__init__)NNr   rA   rB   r   )
r1   r2   r3   r4   r5   r   r7   Zsub_configsr   r6   r.   r.   r,   r/   r@   æ   s   2
      ùr@   )r@   r   r7   N)r4   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr1   rC   r   r7   r@   Ú__all__r.   r.   r.   r/   Ú<module>   s   
|RW