a
    h.                     @   s   d Z ddlmZ ddlmZ ddlmZmZ ddlm	Z	m
Z
 eeZdZG d	d
 d
eZeejddddG dd deZeejddddG dd deZeejddddG dd deZG dd deZg dZdS )zBARK model configuration    )Optional   )PretrainedConfig)add_start_docstringslogging   )CONFIG_MAPPING
AutoConfiga
  
    This is the configuration class to store the configuration of a [`{model}`]. It is used to instantiate the model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        block_size (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        input_vocab_size (`int`, *optional*, defaults to 10_048):
            Vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`{model}`]. Defaults to 10_048 but should be carefully thought with
            regards to the chosen sub-model.
        output_vocab_size (`int`, *optional*, defaults to 10_048):
            Output vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented
            by the: `output_ids` when passing forward a [`{model}`]. Defaults to 10_048 but should be carefully thought
            with regards to the chosen sub-model.
        num_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the given sub-model.
        num_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer architecture.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the architecture.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use bias in the linear layers and layer norm layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
c                
       s2   e Zd ZdgZdddddZd fdd	Z  ZS )BarkSubModelConfigZpast_key_values	num_heads
num_layersinput_vocab_size
block_size)Znum_attention_headsZnum_hidden_layersZ
vocab_sizeZwindow_size   @'                T{Gz?c                    sR   || _ || _|| _|| _|| _|| _|| _|| _|
| _|	| _	t
 jf i | d S )N)r   r   output_vocab_sizer   r   hidden_sizedropoutbias	use_cacheinitializer_rangesuper__init__)selfr   r   r   r   r   r   r   r   r   r   kwargs	__class__ g/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/bark/configuration_bark.pyr   K   s    zBarkSubModelConfig.__init__)
r   r   r   r   r   r   r   Tr   T)__name__
__module____qualname__Zkeys_to_ignore_at_inferenceZattribute_mapr   __classcell__r!   r!   r   r"   r
   A   s"   	          r
   BarkSemanticConfigZBarkSemanticModel)configmodela  
    Example:

    ```python
    >>> from transformers import BarkSemanticConfig, BarkSemanticModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkSemanticConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkSemanticModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                   @   s   e Zd ZdZdZdS )r'   Zsemanticsemantic_configNr#   r$   r%   
model_typebase_config_keyr!   r!   r!   r"   r'   g   s   BarkCoarseConfigZBarkCoarseModela  
    Example:

    ```python
    >>> from transformers import BarkCoarseConfig, BarkCoarseModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkCoarseConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkCoarseModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                   @   s   e Zd ZdZdZdS )r.   Zcoarse_acousticscoarse_acoustics_configNr+   r!   r!   r!   r"   r.   ~   s   BarkFineConfigZBarkFineModela   
        n_codes_total (`int`, *optional*, defaults to 8):
            The total number of audio codebooks predicted. Used in the fine acoustics sub-model.
        n_codes_given (`int`, *optional*, defaults to 1):
            The number of audio codebooks predicted in the coarse acoustics sub-model. Used in the acoustics
            sub-models.
    Example:

    ```python
    >>> from transformers import BarkFineConfig, BarkFineModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkFineConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkFineModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                       s&   e Zd ZdZdZd fdd	Z  ZS )	r0   Zfine_acousticsfine_acoustics_configT      c                    s&   || _ || _t jf d|i| d S )Ntie_word_embeddings)n_codes_totaln_codes_givenr   r   )r   r4   r5   r6   r   r   r!   r"   r      s    zBarkFineConfig.__init__)Tr2   r3   )r#   r$   r%   r,   r-   r   r&   r!   r!   r   r"   r0      s   c                       sh   e Zd ZdZdZeeeedZ	d
e
e e
e e
e e
e d fddZeeeeeddd	Z  ZS )
BarkConfiga  
    This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark
    model according to the specified sub-models configurations, defining the model architecture.

    Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark
    [suno/bark](https://huggingface.co/suno/bark) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
    semantic_config ([`BarkSemanticConfig`], *optional*):
        Configuration of the underlying semantic sub-model.
    coarse_acoustics_config ([`BarkCoarseConfig`], *optional*):
        Configuration of the underlying coarse acoustics sub-model.
    fine_acoustics_config ([`BarkFineConfig`], *optional*):
        Configuration of the underlying fine acoustics sub-model.
    codec_config ([`AutoConfig`], *optional*):
        Configuration of the underlying codec sub-model.

    Example:

    ```python
    >>> from transformers import (
    ...     BarkSemanticConfig,
    ...     BarkCoarseConfig,
    ...     BarkFineConfig,
    ...     BarkModel,
    ...     BarkConfig,
    ...     AutoConfig,
    ... )

    >>> # Initializing Bark sub-modules configurations.
    >>> semantic_config = BarkSemanticConfig()
    >>> coarse_acoustics_config = BarkCoarseConfig()
    >>> fine_acoustics_config = BarkFineConfig()
    >>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz")


    >>> # Initializing a Bark module style configuration
    >>> configuration = BarkConfig.from_sub_model_configs(
    ...     semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config
    ... )

    >>> # Initializing a model (with random weights)
    >>> model = BarkModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    Zbarkr*   r/   r1   codec_configNr   c                    s   |d u ri }t d |d u r,i }t d |d u rBi }t d |d u rXi }t d tf i || _tf i || _tf i || _|dd}t	| f i || _
|| _t jf i | d S )NzMsemantic_config is None. initializing the semantic model with default values.zScoarse_acoustics_config is None. initializing the coarse model with default values.zOfine_acoustics_config is None. initializing the fine model with default values.zGcodec_config is None. initializing the codec model with default values.r,   Zencodec)loggerinfor'   r*   r.   r/   r0   r1   getr   r9   r   r   r   )r   r*   r/   r1   r9   r   r   Zcodec_model_typer   r!   r"   r      s&    	



zBarkConfig.__init__c                 K   s(   | f |  |  |  |  d|S )z
        Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration.

        Returns:
            [`BarkConfig`]: An instance of a configuration object
        r8   )to_dict)clsr*   r/   r1   r9   r   r!   r!   r"   from_sub_model_configs  s    z!BarkConfig.from_sub_model_configs)NNNNr   )r#   r$   r%   __doc__r,   r'   r.   r0   r	   Zsub_configsr   dictr   classmethodr   r?   r&   r!   r!   r   r"   r7      s0   4	     #r7   )r.   r7   r0   r'   N)r@   typingr   Zconfiguration_utilsr   utilsr   r   autor   r	   Z
get_loggerr#   r:   Z#BARK_SUBMODELCONFIG_START_DOCSTRINGr
   formatr'   r.   r0   r7   __all__r!   r!   r!   r"   <module>   s0   
&&x