a
    ½Àh–'  ã                   @   s@   d Z ddlmZ ddlmZ e e¡ZG dd„ deƒZdgZ	dS )zBamba model configurationé   )ÚPretrainedConfig)Úloggingc                       s8   e Zd ZdZdZdgZd‡ fdd„	Zedd„ ƒZ‡  Z	S )ÚBambaConfigaÜ  
    This is the configuration class to store the configuration of a [`BambaModel`]. It is used to instantiate a
    BambaModel model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with defaults taken from [ibm-fms/Bamba-9.8b-2.2T-hf](https://huggingface.co/ibm-fms/Bamba-9.8b-2.2T-hf).

    The BambaModel is a hybrid [mamba2](https://github.com/state-spaces/mamba) architecture with SwiGLU.
    The checkpoints are  jointly trained by IBM, Princeton, and UIUC.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 128000):
            Vocabulary size of the Bamba model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`BambaModel`]
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
            model has an output word embedding layer.
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
            Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
            integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
            logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
            sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
            significantly.
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        max_position_embeddings (`int`, *optional*, defaults to 262144):
            Max cached sequence length for the model
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        attn_layer_indices (`list`, *optional*):
            Specifies the layer indices that will have full attention. Must contain values at most num_hidden_layers.
        mamba_n_heads (`int`, *optional*, defaults to 128):
            The number of mamba heads used in the v2 implementation.
        mamba_d_head (`int`, *optional*, defaults to `"auto"`):
            Head embedding dimension size
        mamba_n_groups (`int`, *optional*, defaults to 1):
            The number of the mamba groups used in the v2 implementation.
        mamba_d_state (`int`, *optional*, defaults to 256):
            The dimension the mamba state space latents
        mamba_d_conv (`int`, *optional*, defaults to 4):
            The size of the mamba convolution kernel
        mamba_expand (`int`, *optional*, defaults to 2):
            Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
        mamba_chunk_size (`int`, *optional*, defaults to 256):
            The chunks in which to break the sequence when doing prefill/training
        mamba_conv_bias (`bool`, *optional*, defaults to `True`):
            Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
        mamba_proj_bias (`bool`, *optional*, defaults to `False`):
            Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
        z_loss_coefficient (`float`, *optional*, defaults to 0.0):
            Coefficient for auxiliary z-loss used to control logit growth during training

    ZbambaZpast_key_valuesé ô Fé   é 8  é    é   Úsiluç{®Gáz”?çñhãˆµøä>Té   é    é   é   ç        Né€   Úautoé   é   c                    s   || _ || _|| _|| _|| _|| _|| _|| _d| _d| _	|d u rH|}|| _
|| _|	| _|
| _|| _|| _|| _d| _d | _d| _|| }|| dkr tdƒ‚|dkr°|| }|| |krÄtdƒ‚|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _tƒ j f ||||dœ|¤Ž d S )	NFg     ˆÃ@g      à?r   z4mamba_n_heads must divide mamba_expand * hidden_sizer   zPThe dimensions for the Mamba head state do not match the model intermediate_size)Úpad_token_idÚbos_token_idÚeos_token_idÚtie_word_embeddings)!Ú
vocab_sizer   Úhidden_sizeÚintermediate_sizeÚnum_hidden_layersÚnum_attention_headsÚmax_position_embeddingsÚattention_dropoutZattention_biasZmlp_biasÚnum_key_value_headsÚ
hidden_actÚinitializer_rangeÚrms_norm_epsÚ	use_cacheÚnum_logits_to_keepÚattn_layer_indicesZ
rope_thetaZrope_scalingZpartial_rotary_factorÚ
ValueErrorÚmamba_n_headsÚmamba_d_headÚmamba_n_groupsÚmamba_d_stateÚmamba_d_convÚmamba_expandÚmamba_chunk_sizeÚmamba_conv_biasÚmamba_proj_biasÚz_loss_coefficientÚsuperÚ__init__)Úselfr   r   r   r   r   r   r!   r"   r#   r$   r%   r&   r   r   r   r   r    r'   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   ÚkwargsZmamba_intermediate©Ú	__class__© úi/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/bamba/configuration_bamba.pyr4   o   s^     üûzBambaConfig.__init__c                    s   ‡ fdd„t ˆ jƒD ƒS )Nc                    s$   g | ]}ˆ j r|ˆ j v rd nd‘qS )Z	attentionZmamba)r'   )Ú.0Úi©r5   r9   r:   Ú
<listcomp>Ì   s   ÿz1BambaConfig.layers_block_type.<locals>.<listcomp>)Úranger   r=   r9   r=   r:   Úlayers_block_typeÊ   s    
þzBambaConfig.layers_block_type)r   Fr   r   r   r   r	   r
   r   r   Tr   r   r   r   r   r   Nr   r   r   r   r   r   r   TFr   )
Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typeZkeys_to_ignore_at_inferencer4   Úpropertyr@   Ú__classcell__r9   r9   r7   r:   r      sD   S                            ã[r   N)
rD   Zconfiguration_utilsr   Úutilsr   Z
get_loggerrA   Úloggerr   Ú__all__r9   r9   r9   r:   Ú<module>   s   
 ;