a
    h'                     @   s   d Z ddlmZmZ ddlmZ ddlmZmZm	Z	m
Z
 ddlmZ eeZG dd deZG d	d
 d
eZeddG dd deZeddG dd de	ZeddG dd deZeddG dd de
Zg dZdS )zPyTorch Arcee model.    )auto_docstringlogging   )LlamaConfig)LlamaForCausalLMLlamaForQuestionAnsweringLlamaForSequenceClassificationLlamaForTokenClassification)NemotronMLPc                       s8   e Zd ZdZdZdddddddZd fdd	Z  ZS )ArceeConfiga  
    This is the configuration class to store the configuration of a [`ArceeModel`]. It is used to instantiate an Arcee
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the AFM-4.5B-Base.

    Pre-trained weights are available at
    [arcee-ai/AFM-4.5B](https://huggingface.co/arcee-ai/AFM-4.5B)
    and were used to build the examples below.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Arcee model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`ArceeModel`]
        hidden_size (`int`, *optional*, defaults to 2560):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 18432):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with. AFM-4.5B-Base supports up to 16384 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 128000):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 128001):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'yarn'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'yarn'. The original max position embeddings used during pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn'. The scaling factor to be applied on the attention computation. If unspecified,
                    it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
        head_dim (`int`, *optional*):
            The attention head dimension. If None, it will default to hidden_size // num_attention_heads

    ```python
    >>> from transformers import ArceeModel, ArceeConfig

    >>> # Initializing an Arcee AFM-4.5B-Base style configuration
    >>> configuration = ArceeConfig()

    >>> # Initializing a model from the AFM-4.5B-Base style configuration
    >>> model = ArceeModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZarceeZcolwiseZrowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj }   
   H      Nrelu2   {Gz?h㈵>T   F     @        c                    sF   t  jf |||||||||	|
|||||||||||d| | `d S )N)
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actmax_position_embeddingsinitializer_rangerms_norm_eps	use_cachepad_token_idbos_token_ideos_token_idtie_word_embeddings
rope_thetarope_scalingattention_biasattention_dropoutmlp_biashead_dim)super__init__Zpretraining_tp)selfr   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   kwargs	__class__ c/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/arcee/modular_arcee.pyr.      s4    zArceeConfig.__init__)r   r   r   r   r   Nr   r   r   r   TNr   r   Fr   NFr   FN)__name__
__module____qualname____doc__Z
model_typeZbase_model_tp_planr.   __classcell__r3   r3   r1   r4   r       s>   a                     r   c                   @   s   e Zd ZdS )ArceeMLPNr5   r6   r7   r3   r3   r3   r4   r:      s   r:   zarcee-ai/AFM-4.5B)
checkpointc                   @   s   e Zd ZdS )ArceeForCausalLMNr;   r3   r3   r3   r4   r=      s   r=   c                   @   s   e Zd ZdS )ArceeForSequenceClassificationNr;   r3   r3   r3   r4   r>      s   r>   c                   @   s   e Zd ZdS )ArceeForQuestionAnsweringNr;   r3   r3   r3   r4   r?      s   r?   c                   @   s   e Zd ZdS )ArceeForTokenClassificationNr;   r3   r3   r3   r4   r@      s   r@   )r   r=   r?   r>   r@   Z
ArceeModelZArceePreTrainedModelN)r8   Ztransformers.utilsr   r   Zllama.configuration_llamar   Zllama.modeling_llamar   r   r   r	   Znemotron.modeling_nemotronr
   Z
get_loggerr5   loggerr   r:   r=   r>   r?   r@   __all__r3   r3   r3   r4   <module>   s"   
 "