a
    hi                     @   sr   d Z ddlmZ ddlmZ ddlmZmZmZ ddl	m
Z
mZmZ G dd ded	d
ZG dd deZdgZdS )z&
Image/Text processor class for ALIGN
    )Union   )
ImageInput)ProcessingKwargsProcessorMixinUnpack)BatchEncodingPreTokenizedInput	TextInputc                   @   s   e Zd ZddddiZdS )AlignProcessorKwargstext_kwargs
max_length@   )paddingr   N)__name__
__module____qualname__	_defaults r   r   f/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/align/processing_align.pyr      s
   r   F)totalc                       s^   e Zd ZdZddgZdZdZ fddZdee	e
eee
 ee f ee ed	d
dZ  ZS )AlignProcessoray  
    Constructs an ALIGN processor which wraps [`EfficientNetImageProcessor`] and
    [`BertTokenizer`]/[`BertTokenizerFast`] into a single processor that inherits both the image processor and
    tokenizer functionalities. See the [`~AlignProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
    information.
    The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
        ```python
        from transformers import AlignProcessor
        from PIL import Image
        model_id = "kakaobrain/align-base"
        processor = AlignProcessor.from_pretrained(model_id)

        processor(
            images=your_pil_image,
            text=["What is that?"],
            images_kwargs = {"crop_size": {"height": 224, "width": 224}},
            text_kwargs = {"padding": "do_not_pad"},
            common_kwargs = {"return_tensors": "pt"},
        )
        ```

    Args:
        image_processor ([`EfficientNetImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`BertTokenizer`, `BertTokenizerFast`]):
            The tokenizer is a required input.

    image_processor	tokenizerZEfficientNetImageProcessor)ZBertTokenizerZBertTokenizerFastc                    s   t  || d S )N)super__init__)selfr   r   	__class__r   r   r   F   s    zAlignProcessor.__init__N)imagestextkwargsreturnc           
      K   s   |du r|du rt d| jtfd| jji|}|durP| j|fi |d }|durn| j|fi |d }d|d v r|d dd}	|dur|dur|j|d< |S |dur|S tt	f i ||	d	S dS )
a  
        Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
        arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` arguments to
        EfficientNetImageProcessor's [`~EfficientNetImageProcessor.__call__`] if `images` is not `None`. Please refer
        to the docstring of the above two methods for more information.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `list[str]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.
        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        Nz'You must specify either text or images.Ztokenizer_init_kwargsr   Zimages_kwargsreturn_tensorsZcommon_kwargspixel_values)dataZtensor_type)

ValueErrorZ_merge_kwargsr   r   Zinit_kwargsr   popr$   r   dict)
r   r   r    ZaudioZvideosr!   Zoutput_kwargsencodingZimage_featuresr#   r   r   r   __call__I   s*    &
zAlignProcessor.__call__)NNNN)r   r   r   __doc__
attributesZimage_processor_classZtokenizer_classr   r   r   r
   r	   listr   r   r   r*   __classcell__r   r   r   r   r   $   s       r   N)r+   typingr   Zimage_utilsr   Zprocessing_utilsr   r   r   Ztokenization_utils_baser   r	   r
   r   r   __all__r   r   r   r   <module>   s   
g