a
    ½Àh¬5  ã                   @   sj   d dl mZ ddlmZ ddlmZ e e¡ZG dd„ deƒZ	G dd„ deƒZ
G d	d
„ d
eƒZg d¢ZdS )é    )ÚOptionalé   )ÚPretrainedConfig)Úloggingc                       sL   e Zd ZdZdZdZdeeeeeeeeeeee	eeedœ‡ fdd„Z
‡  ZS )ÚAimv2VisionConfiga“  
    This is the configuration class to store the configuration of a [`Aimv2VisionModel`]. It is used to instantiate a
    AIMv2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the vision encoder of the AIMv2
    [apple/aimv2-large-patch14-224](https://huggingface.co/apple/aimv2-large-patch14-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2816):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 14):
            The size (resolution) of each patch.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        qkv_bias (`bool`, *optional*, defaults to `False`):
            Whether to add a bias to the queries, keys and values.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to add a bias to the Linear layers or Not.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the for initializing all weight matrices.
        use_head (`str`, *optional*, defaults to `True`):
            Whether to use Attention Pooling Head or Not.
        is_native (`str`, *optional*, defaults to `False`):
            Whether to use ckpt trained for image native resolution or not.
    Example:

    ```python
    >>> from transformers import SiglipVisionConfig, SiglipVisionModel

    >>> # Initializing a Aimv2VisionConfig with apple/aimv2-large-patch14-224 style configuration
    >>> configuration = Aimv2VisionConfig()

    >>> # Initializing a Aimv2VisionModel (with random weights) from the apple/aimv2-large-patch14-224 style configuration
    >>> model = Aimv2VisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zaimv2_vision_modelÚvision_configé   é   é   é   r   éà   é   çñhãˆµøä>ç        FÚsiluç{®Gáz”?T)Úhidden_sizeÚintermediate_sizeÚnum_hidden_layersÚnum_attention_headsÚnum_channelsÚ
image_sizeÚ
patch_sizeÚrms_norm_epsÚattention_dropoutÚqkv_biasÚmlp_biasÚ
hidden_actÚinitializer_rangeÚuse_headÚ	is_nativec                    sp   t ƒ jf i |¤Ž || _|| _|| _|| _|| _|| _|| _|	| _	|| _
|| _|| _|| _|
| _|| _|| _d S )N)ÚsuperÚ__init__r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    )Úselfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r    Úkwargs©Ú	__class__© úi/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/models/aimv2/configuration_aimv2.pyr"   [   s     zAimv2VisionConfig.__init__)r   r	   r
   r   r   r   r   r   r   FFr   r   TF)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Ú
model_typeÚbase_config_keyÚintÚfloatÚboolÚstrr"   Ú__classcell__r'   r'   r%   r(   r      sF   8               ððr   c                       sT   e Zd ZdZdZdZdeeeeeeeeee	e
e e
e eeedœ‡ fdd„Z‡  ZS )ÚAimv2TextConfigaÄ  
    This is the configuration class to store the configuration of a [`Aimv2TextModel`]. It is used to instantiate a
    AIMv2 text encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the text encoder of the AIMv2
    [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the AIMv2 text model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`Aimv2Model`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 6):
            Number of attention heads for each attention layer in the Transformer encoder.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        qkv_bias (`bool`, *optional*, defaults to `False`):
            Whether to add a bias to the queries, keys and values.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to add a bias to the Linear layers or Not.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        pad_token_id (`int`, *optional*, defaults to 1):
            The id of the padding token in the vocabulary.
        bos_token_id (`int`, *optional*, defaults to 49406):
            The id of the beginning-of-sequence token in the vocabulary.
        eos_token_id (`int`, *optional*, defaults to 49407):
            The id of the end-of-sequence token in the vocabulary.
        max_position_embeddings (`int`, *optional*, defaults to 77):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the for initializing all weight matrices.
    Zaimv2_text_modelÚtext_configé Á  é   é   é   é   r   r   Fr   NéÿÀ  éM   r   )Ú
vocab_sizer   r   r   r   r   r   r   r   r   Úpad_token_idÚbos_token_idÚeos_token_idÚmax_position_embeddingsr   c                    sf   t ƒ jf |||dœ|¤Ž || _|| _|| _|| _|| _|| _|
| _|| _	|| _
|	| _|| _|| _d S )N)r>   r?   r@   )r!   r"   r=   r   r   r   r   rA   r   r   r   r   r   r   )r#   r=   r   r   r   r   r   r   r   r   r   r>   r?   r@   rA   r   r$   r%   r'   r(   r"   ³   s    zAimv2TextConfig.__init__)r6   r7   r8   r9   r:   r   r   FFr   NNr;   r<   r   )r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r   r"   r3   r'   r'   r%   r(   r4   ‚   sF   -               ððr4   c                       s0   e Zd ZdZdZeedœZd	‡ fdd„	Z‡  Z	S )
ÚAimv2Configa@  
    [`Aimv2Config`] is the configuration class to store the configuration of a [`Aimv2Model`]. It is used to
    instantiate a AIMv2 model according to the specified arguments, defining the text model and vision model configs.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the AIMv2
    [apple/aimv2-large-patch14-224-lit](https://huggingface.co/apple/aimv2-large-patch14-224-lit) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Aimv2TextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Aimv2VisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import Aimv2Config, Aimv2Model

    >>> # Initializing a Aimv2Config with apple/aimv2-large-patch14-224-lit style configuration
    >>> configuration = Aimv2Config()

    >>> # Initializing a Aimv2Model (with random weights) from the apple/aimv2-large-patch14-224-lit style configuration
    >>> model = Aimv2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a Aimv2Config from a Aimv2TextConfig and a Aimv2VisionConfig
    >>> from transformers import Aimv2TextConfig, Aimv2VisionConfig

    >>> # Initializing a AIMv2Text and AIMv2Vision configuration
    >>> config_text = Aimv2TextConfig()
    >>> config_vision = Aimv2VisionConfig()

    >>> config = Aimv2Config(text_config=config_text, vision_config=config_vision)
    ```Zaimv2)r5   r   Né   çƒ/L¦
F@c                    st   t ƒ jf i |¤Ž |d u r(i }t d¡ |d u r>i }t d¡ tf i |¤Ž| _tf i |¤Ž| _|| _|| _	d| _
d S )NzP`text_config` is `None`. Initializing the `Aimv2TextConfig` with default values.zT`vision_config` is `None`. initializing the `Aimv2VisionConfig` with default values.g      Y@)r!   r"   ÚloggerÚinfor4   r5   r   r   Úprojection_dimÚlogit_scale_init_valueZmax_logit_scale)r#   r5   r   rG   rH   r$   r%   r'   r(   r"     s    

zAimv2Config.__init__)NNrC   rD   )
r)   r*   r+   r,   r-   r4   r   Zsub_configsr"   r3   r'   r'   r%   r(   rB   ×   s
   -
 ÿrB   )rB   r   r4   N)Útypingr   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr)   rE   r   r4   rB   Ú__all__r'   r'   r'   r(   Ú<module>   s   
cUE