a
    h                     @   s  d dl Z d dlZd dlmZ d dlmZ d dlmZ d dlm	Z	m
Z
 d dlZd dlZd dlmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZ dd	lmZmZm Z m!Z!m"Z"m#Z# e rZd dl$Z%d dl&Z%e'e'e%j(j)e'd
kre%j*j+Z,ne%j*Z,e rVd dl-m.Z. e,j/e r$e.j0ne.j/e,j1e.j1e,j2e.j2e,j3e.j3e,j4e.j4e,j5e.j5iZ6ni Z6e rjd dl7Z7e8e9Z:e
dej;de<d e<ej; e<d f Z=G dd deZ>G dd deZ?G dd deZ@eAeBe
eCeBe<eA f f ZDdd ZEG dd deZFdd ZGdd ZHe<dddZIdd  ZJd!d" ZKd#d$ ZLej;eMd%d&d'ZNdbeCe<e= d)d*d+ZOdce
e<e= e=f eCe=d,d-d.ZPdde
e<e= e=f eCe=d,d/d0ZQej;d1d2d3ZRdeej;e	e
eCeSeCd4f f  e>d5d6d7ZTdfej;e	e
e>eBf  eCd8d9d:ZUdgej;e>eSeCeCf d;d<d=ZVeSeCeCf eCeCeSeCeCf d>d?d@ZWeAeBe
e<eSf f eMdAdBdCZXeAeBe
e<eSf f eMdAdDdEZYeeAeBe
e<eSf f  eMdFdGdHZZeeAeBe
e<eSf f  eMdFdIdJZ[dhe
eBdf e	e\ ddKdLdMZ]die
e<eSeBdf e	e\ e
de<d e<e<d  f dNdOdPZ^dje	eM e	e\ e	eM e	e
e\e<e\ f  e	e
e\e<e\ f  e	eM e	eC e	eM e	eAeBeCf  e	eM e	eAeBeCf  e	dQ e	dR dSdTdUZ_G dVdW dWZ`e?eSe?d4f e<eA ddXdYdZZae<eB e<eB d[d\d]Zbed^d_G d`da daZcdS )k    N)Iterable)	dataclass)BytesIO)OptionalUnion)version   )ExplicitEnumis_jax_tensoris_numpy_arrayis_tf_tensoris_torch_availableis_torch_tensoris_torchvision_availableis_torchvision_v2_availableis_vision_availableloggingrequires_backendsto_numpy)IMAGENET_DEFAULT_MEANIMAGENET_DEFAULT_STDIMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDOPENAI_CLIP_MEANOPENAI_CLIP_STDz9.1.0)InterpolationModezPIL.Image.Imageztorch.Tensorc                   @   s   e Zd ZdZdZdS )ChannelDimensionZchannels_firstZchannels_lastN)__name__
__module____qualname__FIRSTLAST r"   r"   T/var/www/html/assistant/venv/lib/python3.9/site-packages/transformers/image_utils.pyr   X   s   r   c                   @   s   e Zd ZdZdZdS )AnnotationFormatZcoco_detectionZcoco_panopticN)r   r   r   COCO_DETECTIONCOCO_PANOPTICr"   r"   r"   r#   r$   ]   s   r$   c                   @   s   e Zd ZejjZejjZdS )AnnotionFormatN)r   r   r   r$   r%   valuer&   r"   r"   r"   r#   r'   b   s   r'   c                 C   s   t  ot| tjjS N)r   
isinstancePILImageimgr"   r"   r#   is_pil_imagej   s    r/   c                   @   s    e Zd ZdZdZdZdZdZdS )	ImageTypeZpillowtorchnumpyZ
tensorflowZjaxN)r   r   r   r+   TORCHNUMPY
TENSORFLOWJAXr"   r"   r"   r#   r0   n   s
   r0   c                 C   s\   t | rtjS t| rtjS t| r*tjS t| r8tjS t	| rFtj
S tdt|  d S )NzUnrecognized image type )r/   r0   r+   r   r3   r   r4   r   r5   r
   r6   
ValueErrortypeimager"   r"   r#   get_image_typev   s    r;   c                 C   s(   t | p&t| p&t| p&t| p&t| S r)   )r/   r   r   r   r
   r-   r"   r"   r#   is_valid_image   s    r<   imagesc                 C   s   | ot dd | D S )Nc                 s   s   | ]}t |V  qd S r)   )r<   .0r:   r"   r"   r#   	<genexpr>       z*is_valid_list_of_images.<locals>.<genexpr>allr=   r"   r"   r#   is_valid_list_of_images   s    rE   c                 C   s\   t | d trdd | D S t | d tjr:tj| ddS t | d tjrXtj| ddS d S )Nr   c                 S   s   g | ]}|D ]}|qqS r"   r"   )r@   Zsublistitemr"   r"   r#   
<listcomp>   rB   z$concatenate_list.<locals>.<listcomp>Zaxis)dim)r*   listnpndarrayZconcatenater1   Tensorcat)Z
input_listr"   r"   r#   concatenate_list   s    rO   c                 C   s8   t | ttfr(| D ]}t|s dS qnt| s4dS dS )NFT)r*   rJ   tuplevalid_imagesr<   )Zimgsr.   r"   r"   r#   rQ      s    
rQ   c                 C   s   t | ttfrt| d S dS )Nr   F)r*   rJ   rP   r<   r-   r"   r"   r#   
is_batched   s    rR   )r:   returnc                 C   s,   | j tjkrdS t| dko*t| dkS )zV
    Checks to see whether the pixel values have already been rescaled to [0, 1].
    Fr   r   )dtyperK   uint8minmaxr9   r"   r"   r#   is_scaled_image   s    rX      )expected_ndimsrS   c                 C   s   t | r| S t| r| gS t| rr| j|d kr:t| } n4| j|krL| g} n"td|d  d| d| j d| S tdt|  ddS )	a  
    Ensure that the output is a list of images. If the input is a single image, it is converted to a list of length 1.
    If the input is a batch of images, it is converted to a list of images.

    Args:
        images (`ImageInput`):
            Image of images to turn into a list of images.
        expected_ndims (`int`, *optional*, defaults to 3):
            Expected number of dimensions for a single input image. If the input image has a different number of
            dimensions, an error is raised.
    r   z%Invalid image shape. Expected either z or z dimensions, but got z dimensions.ztInvalid image type. Expected either PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray, but got .N)rR   r/   r<   ndimrJ   r7   r8   r>   rZ   r"   r"   r#   make_list_of_images   s(    

r^   )r>   rZ   rS   c                 C   s   t | ttfr@tdd | D r@tdd | D r@dd | D S t | ttfrt| rt| d sp| d j|krt| S | d j|d krdd | D S t| rt| s| j|kr| gS | j|d krt| S td	|  d
S )a  
    Ensure that the output is a flat list of images. If the input is a single image, it is converted to a list of length 1.
    If the input is a nested list of images, it is converted to a flat list of images.
    Args:
        images (`Union[list[ImageInput], ImageInput]`):
            The input image.
        expected_ndims (`int`, *optional*, defaults to 3):
            The expected number of dimensions for a single input image.
    Returns:
        list: A list of images or a 4d array of images.
    c                 s   s   | ]}t |ttfV  qd S r)   r*   rJ   rP   r@   Zimages_ir"   r"   r#   rA      rB   z+make_flat_list_of_images.<locals>.<genexpr>c                 s   s   | ]}t |V  qd S r)   rE   r`   r"   r"   r#   rA      rB   c                 S   s   g | ]}|D ]}|qqS r"   r"   r@   Zimg_listr.   r"   r"   r#   rG      rB   z,make_flat_list_of_images.<locals>.<listcomp>r   r   c                 S   s   g | ]}|D ]}|qqS r"   r"   rb   r"   r"   r#   rG      rB   z*Could not make a flat list of images from N	r*   rJ   rP   rD   rE   r/   r\   r<   r7   r]   r"   r"   r#   make_flat_list_of_images   s$    rd   c                 C   s   t | ttfr6tdd | D r6tdd | D r6| S t | ttfrt| rt| d sf| d j|krl| gS | d j|d krdd | D S t| rt| s| j|kr| ggS | j|d krt| gS tdd	S )
as  
    Ensure that the output is a nested list of images.
    Args:
        images (`Union[list[ImageInput], ImageInput]`):
            The input image.
        expected_ndims (`int`, *optional*, defaults to 3):
            The expected number of dimensions for a single input image.
    Returns:
        list: A list of list of images or a list of 4d array of images.
    c                 s   s   | ]}t |ttfV  qd S r)   r_   r`   r"   r"   r#   rA     rB   z-make_nested_list_of_images.<locals>.<genexpr>c                 s   s   | ]}t |V  qd S r)   ra   r`   r"   r"   r#   rA     rB   r   r   c                 S   s   g | ]}t |qS r"   )rJ   r?   r"   r"   r#   rG     rB   z.make_nested_list_of_images.<locals>.<listcomp>z]Invalid input type. Must be a single image, a list of images, or a list of batches of images.Nrc   r]   r"   r"   r#   make_nested_list_of_images   s$    
re   )rS   c                 C   s@   t | stdt|  t r8t| tjjr8t| S t	| S )NzInvalid image type: )
r<   r7   r8   r   r*   r+   r,   rK   arrayr   r-   r"   r"   r#   to_numpy_array&  s
    
rg   .)r:   num_channelsrS   c                 C   s   |dur|nd}t |tr |fn|}| jdkr8d\}}n8| jdkrLd\}}n$| jdkr`d\}}ntd| j | j| |v r| j| |v rtd	| j d
 tjS | j| |v rtjS | j| |v rtj	S tddS )a[  
    Infers the channel dimension format of `image`.

    Args:
        image (`np.ndarray`):
            The image to infer the channel dimension of.
        num_channels (`int` or `tuple[int, ...]`, *optional*, defaults to `(1, 3)`):
            The number of channels of the image.

    Returns:
        The channel dimension of the image.
    Nr   rY   rY   )r            )rj   rk   z(Unsupported number of image dimensions: z4The channel dimension is ambiguous. Got image shape z. Assuming channels are the first dimension. Use the [input_data_format](https://huggingface.co/docs/transformers/main/internal/image_processing_utils#transformers.image_transforms.rescale.input_data_format) parameter to assign the channel dimension.z(Unable to infer channel dimension format)
r*   intr\   r7   shapeloggerwarningr   r    r!   )r:   rh   Z	first_dimZlast_dimr"   r"   r#   infer_channel_dimension_format/  s&    





rq   )r:   input_data_formatrS   c                 C   sJ   |du rt | }|tjkr$| jd S |tjkr8| jd S td| dS )a  
    Returns the channel dimension axis of the image.

    Args:
        image (`np.ndarray`):
            The image to get the channel dimension axis of.
        input_data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format of the image. If `None`, will infer the channel dimension from the image.

    Returns:
        The channel dimension axis of the image.
    NrY   r   Unsupported data format: )rq   r   r    r\   r!   r7   )r:   rr   r"   r"   r#   get_channel_dimension_axisV  s    



rt   )r:   channel_dimrS   c                 C   s^   |du rt | }|tjkr.| jd | jd fS |tjkrL| jd | jd fS td| dS )a  
    Returns the (height, width) dimensions of the image.

    Args:
        image (`np.ndarray`):
            The image to get the dimensions of.
        channel_dim (`ChannelDimension`, *optional*):
            Which dimension the channel dimension is in. If `None`, will infer the channel dimension from the image.

    Returns:
        A tuple of the image's height and width.
    Nrs   )rq   r   r    rn   r!   r7   )r:   ru   r"   r"   r#   get_image_sizen  s    

ry   )
image_size
max_height	max_widthrS   c           
      C   sB   | \}}|| }|| }t ||}t|| }t|| }	||	fS )a  
    Computes the output image size given the input image and the maximum allowed height and width. Keep aspect ratio.
    Important, even if image_height < max_height and image_width < max_width, the image will be resized
    to at least one of the edges be equal to max_height or max_width.

    For example:
        - input_size: (100, 200), max_height: 50, max_width: 50 -> output_size: (25, 50)
        - input_size: (100, 200), max_height: 200, max_width: 500 -> output_size: (200, 400)

    Args:
        image_size (`tuple[int, int]`):
            The image to resize.
        max_height (`int`):
            The maximum allowed height.
        max_width (`int`):
            The maximum allowed width.
    )rV   rm   )
rz   r{   r|   heightwidthZheight_scaleZwidth_scaleZ	min_scaleZ
new_heightZ	new_widthr"   r"   r#   #get_image_size_for_max_height_width  s    
r   )
annotationrS   c                 C   sV   t | trRd| v rRd| v rRt | d ttfrRt| d dksNt | d d trRdS dS )Nimage_idannotationsr   TFr*   dictrJ   rP   lenr   r"   r"   r#   "is_valid_annotation_coco_detection  s    
r   c                 C   s^   t | trZd| v rZd| v rZd| v rZt | d ttfrZt| d dksVt | d d trZdS dS )Nr   Zsegments_info	file_namer   TFr   r   r"   r"   r#   !is_valid_annotation_coco_panoptic  s     r   )r   rS   c                 C   s   t dd | D S )Nc                 s   s   | ]}t |V  qd S r)   )r   r@   annr"   r"   r#   rA     rB   z3valid_coco_detection_annotations.<locals>.<genexpr>rC   r   r"   r"   r#    valid_coco_detection_annotations  s    r   c                 C   s   t dd | D S )Nc                 s   s   | ]}t |V  qd S r)   )r   r   r"   r"   r#   rA     rB   z2valid_coco_panoptic_annotations.<locals>.<genexpr>rC   r   r"   r"   r#   valid_coco_panoptic_annotations  s    r   )r:   timeoutrS   c              
   C   s  t tdg t| tr| ds*| drHtjtt	j
| |dj} qtj| rbtj| } q| drz| dd } z"t|  }tjt|} W q ty } z td|  d	| W Y d
}~qd
}~0 0 nt| tjjr| } ntdtj| } | d} | S )a3  
    Loads `image` to a PIL Image.

    Args:
        image (`str` or `PIL.Image.Image`):
            The image to convert to the PIL Image format.
        timeout (`float`, *optional*):
            The timeout value in seconds for the URL request.

    Returns:
        `PIL.Image.Image`: A PIL Image.
    Zvisionzhttp://zhttps://r   zdata:image/,r   zIncorrect image source. Must be a valid URL starting with `http://` or `https://`, a valid path to an image file, or a base64 encoded string. Got z. Failed with NzuIncorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image.RGB)r   
load_imager*   str
startswithr+   r,   openr   requestsgetcontentospathisfilesplitbase64decodebytesencode	Exceptionr7   	TypeErrorZImageOpsZexif_transposeconvert)r:   r   Zb64er"   r"   r#   r     s.    


r   )r>   r   rS   c                    s^   t | ttfrNt| r:t | d ttfr: fdd| D S  fdd| D S nt|  dS dS )a  Loads images, handling different levels of nesting.

    Args:
      images: A single image, a list of images, or a list of lists of images to load.
      timeout: Timeout for loading images.

    Returns:
      A single image, a list of images, a list of lists of images.
    r   c                    s   g | ]} fd d|D qS )c                    s   g | ]}t | d qS r   r   r?   r   r"   r#   rG     rB   z*load_images.<locals>.<listcomp>.<listcomp>r"   )r@   Zimage_groupr   r"   r#   rG     rB   zload_images.<locals>.<listcomp>c                    s   g | ]}t | d qS r   r   r?   r   r"   r#   rG     rB   r   N)r*   rJ   rP   r   r   )r>   r   r"   r   r#   load_images  s
    r   PILImageResamplingr   Z
do_rescaleZrescale_factorZdo_normalizeZ
image_meanZ	image_stdZdo_padZsize_divisibilityZdo_center_cropZ	crop_sizeZ	do_resizesizeresampleinterpolationc                 C   s   | r|du rt d|r(|du r(t d|rD|du s<|du rDt d|rX|du rXt d|durp|durpt d|	r|
dur|dus|dust ddS )a  
    Checks validity of typically used arguments in an `ImageProcessor` `preprocess` method.
    Raises `ValueError` if arguments incompatibility is caught.
    Many incompatibilities are model-specific. `do_pad` sometimes needs `size_divisor`,
    sometimes `size_divisibility`, and sometimes `size`. New models and processors added should follow
    existing arguments when possible.

    Nz=`rescale_factor` must be specified if `do_rescale` is `True`.zzDepending on the model, `size_divisibility`, `size_divisor`, `pad_size` or `size` must be specified if `do_pad` is `True`.zP`image_mean` and `image_std` must both be specified if `do_normalize` is `True`.z<`crop_size` must be specified if `do_center_crop` is `True`.zbOnly one of `interpolation` and `resample` should be specified, depending on image processor type.zO`size` and `resample/interpolation` must be specified if `do_resize` is `True`.)r7   r   r"   r"   r#   validate_preprocess_arguments  s     r   c                   @   s   e Zd ZdZdd ZdddZdd Zeje	e
ef ejd	d
dZdddZdd ZdddZd ddZdd Zdd Zd!ddZdS )"ImageFeatureExtractionMixinzD
    Mixin that contain utilities for preparing image features.
    c                 C   s4   t |tjjtjfs0t|s0tdt| dd S )Nz	Got type zS which is not supported, only `PIL.Image.Image`, `np.array` and `torch.Tensor` are.)r*   r+   r,   rK   rL   r   r7   r8   selfr:   r"   r"   r#   _ensure_format_supportedB  s    z4ImageFeatureExtractionMixin._ensure_format_supportedNc                 C   s   |  | t|r| }t|tjr|du r@t|jd tj}|jdkrf|j	d dv rf|
ddd}|rr|d }|tj}tj|S |S )a"  
        Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
        needed.

        Args:
            image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
                The image to convert to the PIL Image format.
            rescale (`bool`, *optional*):
                Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
                default to `True` if the image type is a floating type, `False` otherwise.
        Nr   rY   ri   r   rj      )r   r   r2   r*   rK   rL   flatZfloatingr\   rn   	transposeastyperU   r+   r,   Z	fromarray)r   r:   rescaler"   r"   r#   to_pil_imageI  s    
z(ImageFeatureExtractionMixin.to_pil_imagec                 C   s&   |  | t|tjjs|S |dS )z
        Converts `PIL.Image.Image` to RGB format.

        Args:
            image (`PIL.Image.Image`):
                The image to convert.
        r   )r   r*   r+   r,   r   r   r"   r"   r#   convert_rgbg  s    
z'ImageFeatureExtractionMixin.convert_rgb)r:   scalerS   c                 C   s   |  | || S )z7
        Rescale a numpy image by scale amount
        )r   )r   r:   r   r"   r"   r#   r   u  s    
z#ImageFeatureExtractionMixin.rescaleTc                 C   s   |  | t|tjjr"t|}t|r2| }|du rLt|jd tj	n|}|rh| 
|tjd}|r|jdkr|ddd}|S )a  
        Converts `image` to a numpy array. Optionally rescales it and puts the channel dimension as the first
        dimension.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to convert to a NumPy array.
            rescale (`bool`, *optional*):
                Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Will
                default to `True` if the image is a PIL Image or an array/tensor of integers, `False` otherwise.
            channel_first (`bool`, *optional*, defaults to `True`):
                Whether or not to permute the dimensions of the image to put the channel dimension first.
        Nr   p?rY   rj   r   )r   r*   r+   r,   rK   rf   r   r2   r   integerr   r   float32r\   r   )r   r:   r   channel_firstr"   r"   r#   rg   |  s    

z*ImageFeatureExtractionMixin.to_numpy_arrayc                 C   sB   |  | t|tjjr|S t|r0|d}ntj|dd}|S )z
        Expands 2-dimensional `image` to 3 dimensions.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to expand.
        r   rH   )r   r*   r+   r,   r   Z	unsqueezerK   expand_dimsr   r"   r"   r#   r     s    
z'ImageFeatureExtractionMixin.expand_dimsFc                 C   sv  |  | t|tjjr(| j|dd}n>|rft|tjrN| |tj	d}nt
|rf| | d}t|tjrt|tjst||j}t|tjst||j}nrt
|r"ddl}t||jst|tjr||}n
||}t||js"t|tjr||}n
||}|jdkrf|jd dv rf||ddddf  |ddddf  S || | S dS )a  
        Normalizes `image` with `mean` and `std`. Note that this will trigger a conversion of `image` to a NumPy array
        if it's a PIL Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to normalize.
            mean (`list[float]` or `np.ndarray` or `torch.Tensor`):
                The mean (per channel) to use for normalization.
            std (`list[float]` or `np.ndarray` or `torch.Tensor`):
                The standard deviation (per channel) to use for normalization.
            rescale (`bool`, *optional*, defaults to `False`):
                Whether or not to rescale the image to be between 0 and 1. If a PIL image is provided, scaling will
                happen automatically.
        T)r   r   r   NrY   ri   )r   r*   r+   r,   rg   rK   rL   r   r   r   r   floatrf   rT   r1   rM   Z
from_numpyZtensorr\   rn   )r   r:   meanZstdr   r1   r"   r"   r#   	normalize  s4    



(z%ImageFeatureExtractionMixin.normalizec                 C   sT  |dur|nt j}| | t|tjjs4| |}t|trFt|}t|t	s^t
|dkrF|rt|t	rt||fn|d |d f}n|j\}}||kr||fn||f\}}	t|t	r|n|d }
||
kr|S |
t	|
|	 |  }}|dur,||
krtd| d| ||kr,t	|| | | }}||kr>||fn||f}|j||dS )a  
        Resizes `image`. Enforces conversion of input to PIL.Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to resize.
            size (`int` or `tuple[int, int]`):
                The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be
                matched to this.

                If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
                `size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to
                this number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
            resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                The filter to user for resampling.
            default_to_square (`bool`, *optional*, defaults to `True`):
                How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a
                square (`size`,`size`). If set to `False`, will replicate
                [`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
                with support for resizing only the smallest edge and providing an optional `max_size`.
            max_size (`int`, *optional*, defaults to `None`):
                The maximum allowed for the longer edge of the resized image: if the longer edge of the image is
                greater than `max_size` after being resized according to `size`, then the image is resized again so
                that the longer edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller
                edge may be shorter than `size`. Only used if `default_to_square` is `False`.

        Returns:
            image: A resized `PIL.Image.Image`.
        Nr   r   zmax_size = zN must be strictly greater than the requested size for the smaller edge size = )r   )r   BILINEARr   r*   r+   r,   r   rJ   rP   rm   r   r   r7   resize)r   r:   r   r   Zdefault_to_squaremax_sizer~   r}   shortlongZrequested_new_shortZ	new_shortZnew_longr"   r"   r#   r     s4    


$



z"ImageFeatureExtractionMixin.resizec                 C   s  |  | t|ts||f}t|s0t|tjrp|jdkrD| |}|jd dv r`|jdd n|jdd }n|j	d |j	d f}|d |d  d }||d  }|d |d  d }||d  }t|t
jjr|||||fS |jd dv }|s,t|tjr|ddd}t|r,|ddd}|dkrr||d krr|dkrr||d krr|d||||f S |jdd t|d |d t|d |d f }	t|tjrtj||	d}
nt|r||	}
|	d |d  d }||d  }|	d	 |d  d }||d  }||
d||||f< ||7 }||7 }||7 }||7 }|
dtd|t|
jd |td|t|
jd	 |f }
|
S )
a  
        Crops `image` to the given size using a center crop. Note that if the image is too small to be cropped to the
        size given, it will be padded (so the returned result has the size asked).

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape (n_channels, height, width) or (height, width, n_channels)):
                The image to resize.
            size (`int` or `tuple[int, int]`):
                The size to which crop the image.

        Returns:
            new_image: A center cropped `PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape: (n_channels,
            height, width).
        rj   r   ri   r   N.rv   )rn   rw   )r   r*   rP   r   rK   rL   r\   r   rn   r   r+   r,   cropr   ZpermuterW   Z
zeros_likeZ	new_zerosrV   )r   r:   r   Zimage_shapetopbottomleftrightr   Z	new_shapeZ	new_imageZtop_padZ
bottom_padZleft_padZ	right_padr"   r"   r#   center_crop'  sP    



,
02

4z'ImageFeatureExtractionMixin.center_cropc                 C   s>   |  | t|tjjr"| |}|dddddddf S )a  
        Flips the channel order of `image` from RGB to BGR, or vice versa. Note that this will trigger a conversion of
        `image` to a NumPy array if it's a PIL Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image whose color channels to flip. If `np.ndarray` or `torch.Tensor`, the channel dimension should
                be first.
        Nrw   )r   r*   r+   r,   rg   r   r"   r"   r#   flip_channel_orderr  s    


z.ImageFeatureExtractionMixin.flip_channel_orderr   c                 C   sL   |dur|nt jj}| | t|t jjs6| |}|j||||||dS )a  
        Returns a rotated copy of `image`. This method returns a copy of `image`, rotated the given number of degrees
        counter clockwise around its centre.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to rotate. If `np.ndarray` or `torch.Tensor`, will be converted to `PIL.Image.Image` before
                rotating.

        Returns:
            image: A rotated `PIL.Image.Image`.
        N)r   expandcenter	translate	fillcolor)r+   r,   NEARESTr   r*   r   rotate)r   r:   Zangler   r   r   r   r   r"   r"   r#   r     s    

z"ImageFeatureExtractionMixin.rotate)N)NT)F)NTN)Nr   NNN)r   r   r   __doc__r   r   r   rK   rL   r   r   rm   r   rg   r   r   r   r   r   r   r"   r"   r"   r#   r   =  s   

 
4
CKr   )annotation_formatsupported_annotation_formatsr   rS   c                 C   sT   | |vrt dt d| | tju r6t|s6t d| tju rPt|sPt dd S )NzUnsupported annotation format: z must be one of zInvalid COCO detection annotations. Annotations must a dict (single image) or list of dicts (batch of images) with the following keys: `image_id` and `annotations`, with the latter being a list of annotations in the COCO format.zInvalid COCO panoptic annotations. Annotations must a dict (single image) or list of dicts (batch of images) with the following keys: `image_id`, `file_name` and `segments_info`, with the latter being a list of annotations in the COCO format.)r7   formatr$   r%   r   r&   r   )r   r   r   r"   r"   r#   validate_annotations  s    

r   )valid_processor_keyscaptured_kwargsc                 C   s6   t |t | }|r2d|}td| d d S )Nz, zUnused or unrecognized kwargs: r[   )set
differencejoinro   rp   )r   r   Zunused_keysZunused_key_strr"   r"   r#   validate_kwargs  s    
r   T)frozenc                   @   sz   e Zd ZU dZdZee ed< dZee ed< dZ	ee ed< dZ
ee ed< dZee ed< dZee ed< d	d
 ZdS )SizeDictz>
    Hashable dictionary to store image size information.
    Nr}   r~   longest_edgeshortest_edger{   r|   c                 C   s(   t | |rt| |S td| dd S )NzKey z not found in SizeDict.)hasattrgetattrKeyError)r   keyr"   r"   r#   __getitem__  s    

zSizeDict.__getitem__)r   r   r   r   r}   r   rm   __annotations__r~   r   r   r{   r|   r   r"   r"   r"   r#   r     s   
r   )rY   )rY   )rY   )N)N)N)N)N)NNNNNNNNNNNNN)dr   r   collections.abcr   dataclassesr   ior   typingr   r   r2   rK   r   	packagingr   utilsr	   r
   r   r   r   r   r   r   r   r   r   r   Zutils.constantsr   r   r   r   r   r   Z	PIL.Imager+   ZPIL.ImageOpsparse__version__base_versionr,   Z
Resamplingr   Ztorchvision.transformsr   r   ZNEAREST_EXACTZBOXr   ZHAMMINGZBICUBICZLANCZOSZpil_torch_interpolation_mappingr1   Z
get_loggerr   ro   rL   rJ   Z
ImageInputr   r$   r'   r   r   rm   ZAnnotationTyper/   r0   r;   r<   rE   rO   rQ   rR   boolrX   r^   rd   re   rg   rP   rq   rt   ry   r   r   r   r   r   r   r   r   r   r   r   r   r   r"   r"   r"   r#   <module>   s   8 



	) ( '
 ( 

  $$ -              0  b
