a
    hp                     @   s  d Z ddlZddlZddlmZmZ ddlmZmZm	Z	 ddl
mZ ddlZddlZddlmZ ddlmZmZ d	d
lmZ d	dlmZmZmZmZmZ eddddZeeZee edgdgdgdgeed	dddgeeddddgddddddddddddZ!dS )a:  California housing dataset.

The original database is available from StatLib

    http://lib.stat.cmu.edu/datasets/

The data contains 20,640 observations on 9 variables.

This dataset contains the average house value as target variable
and the following input variables (features): average income,
housing average age, average rooms, average bedrooms, population,
average occupation, latitude, and longitude in that order.

References
----------

Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
Statistics and Probability Letters, 33 (1997) 291-297.

    N)IntegralReal)PathLikemakedirsremove)exists   )Bunch)Intervalvalidate_params   )get_data_home)RemoteFileMetadata_convert_data_dataframe_fetch_remote_pkl_filepath
load_descrzcal_housing.tgzz.https://ndownloader.figshare.com/files/5976036Z@aaa5c9a6afe2225cc2aed2723682ae403280c4a3695a2ddda4ffb5d8215ea681)filenameurlZchecksumbooleanleft)closedg        Zneither)	data_homedownload_if_missing
return_X_yas_frame	n_retriesdelayT)Zprefer_skip_nested_validationF   g      ?c                 C   s  t | d} t| st|  t| d}t|s|s8tdtdtj	|  t
t| ||d}tjd|dL}tj|dd	d
}	g d}
|	dd|
f }	tj|	|dd W d   n1 s0    Y  t| n
t|}	g d}|	dddf |	ddddf  }}|dddf  |dddf   < |dddf  |dddf   < |dddf |dddf  |dddf< |d }td}|}|}d}dg}|rtd||||\}}}|r||fS t||||||dS )a  Load the California housing dataset (regression).

    ==============   ==============
    Samples total             20640
    Dimensionality                8
    Features                   real
    Target           real 0.15 - 5.
    ==============   ==============

    Read more in the :ref:`User Guide <california_housing_dataset>`.

    Parameters
    ----------
    data_home : str or path-like, default=None
        Specify another download and cache folder for the datasets. By default
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.

    download_if_missing : bool, default=True
        If False, raise an OSError if the data is not locally available
        instead of trying to download the data from the source site.

    return_X_y : bool, default=False
        If True, returns ``(data.data, data.target)`` instead of a Bunch
        object.

        .. versionadded:: 0.20

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric, string or categorical). The target is
        a pandas DataFrame or Series depending on the number of target_columns.

        .. versionadded:: 0.23

    n_retries : int, default=3
        Number of retries when HTTP errors are encountered.

        .. versionadded:: 1.5

    delay : float, default=1.0
        Number of seconds between retries.

        .. versionadded:: 1.5

    Returns
    -------
    dataset : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : ndarray, shape (20640, 8)
            Each row corresponding to the 8 feature values in order.
            If ``as_frame`` is True, ``data`` is a pandas object.
        target : numpy array of shape (20640,)
            Each value corresponds to the average
            house value in units of 100,000.
            If ``as_frame`` is True, ``target`` is a pandas object.
        feature_names : list of length 8
            Array of ordered feature names used in the dataset.
        DESCR : str
            Description of the California housing dataset.
        frame : pandas DataFrame
            Only present when `as_frame=True`. DataFrame with ``data`` and
            ``target``.

            .. versionadded:: 0.23

    (data, target) : tuple if ``return_X_y`` is True
        A tuple of two ndarray. The first containing a 2D array of
        shape (n_samples, n_features) with each row representing one
        sample and each column representing the features. The second
        ndarray of shape (n_samples,) containing the target samples.

        .. versionadded:: 0.20

    Notes
    -----

    This dataset consists of 20,640 samples and 9 features.

    Examples
    --------
    >>> from sklearn.datasets import fetch_california_housing
    >>> housing = fetch_california_housing()
    >>> print(housing.data.shape, housing.target.shape)
    (20640, 8) (20640,)
    >>> print(housing.feature_names[0:6])
    ['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup']
    )r   zcal_housing.pkzz1Data not found and `download_if_missing` is Falsez&Downloading Cal. housing from {} to {})dirnamer   r   zr:gz)modenamez"CaliforniaHousing/cal_housing.data,)	delimiter)	      r   r            r   r   Nr(   )compress)ZMedIncZHouseAgeZAveRoomsZ	AveBedrmsZ
PopulationZAveOccupZLatitudeZ	Longituder   r   r   r'   r   r&   g     j@zcalifornia_housing.rstZMedHouseValfetch_california_housing)datatargetframetarget_namesfeature_namesZDESCR)r   r   r   r   OSErrorloggerinfoformatARCHIVEr   r   tarfileopennpZloadtxtextractfilejoblibdumpr   loadr   r   r	   )r   r   r   r   r   r   filepatharchive_pathfZcal_housingZcolumns_indexr/   r,   r+   descrXyr-   r.    rB   `/var/www/html/assistant/venv/lib/python3.9/site-packages/sklearn/datasets/_california_housing.pyr*   8   sf    l


.

&$$,

r*   )"__doc__loggingr5   numbersr   r   osr   r   r   os.pathr   r9   numpyr7   utilsr	   Zutils._param_validationr
   r    r   Z_baser   r   r   r   r   r4   	getLogger__name__r1   strr*   rB   rB   rB   rC   <module>   sD   

