a
    ht                     @  s\   d dl mZ d dlmZ d dlZd dlmZ d dlmZ ddlmZm	Z	 G dd	 d	eZ
dS )
    )annotations)IterableN)Tensor)SentenceTransformer   )BatchHardTripletLoss$BatchHardTripletLossDistanceFunctionc                      s`   e Zd Zejfddd fddZddddd	d
ZddddddZeddddZ	  Z
S )BatchHardSoftMarginTripletLossr   None)modelreturnc                   s   t  | || _|| _dS )a  
        BatchHardSoftMarginTripletLoss takes a batch with (sentence, label) pairs and computes the loss for all possible, valid
        triplets, i.e., anchor and positive must have the same label, anchor and negative a different label. The labels
        must be integers, with same label indicating sentences from the same class. Your train dataset
        must contain at least 2 examples per label class. This soft-margin variant does not require setting a margin.

        Args:
            model: SentenceTransformer model
            distance_metric: Function that returns a distance between
                two embeddings. The class SiameseDistanceMetric contains
                pre-defined metrics that can be used.

        Definitions:
            :Easy triplets: Triplets which have a loss of 0 because
                ``distance(anchor, positive) + margin < distance(anchor, negative)``.
            :Hard triplets: Triplets where the negative is closer to the anchor than the positive, i.e.,
                ``distance(anchor, negative) < distance(anchor, positive)``.
            :Semi-hard triplets: Triplets where the negative is not closer to the anchor than the positive, but which
                still have a positive loss, i.e., ``distance(anchor, positive) < distance(anchor, negative) + margin``.

        References:
            * Source: https://github.com/NegatioN/OnlineMiningTripletLoss/blob/master/online_triplet_loss/losses.py
            * Paper: In Defense of the Triplet Loss for Person Re-Identification, https://arxiv.org/abs/1703.07737
            * Blog post: https://omoindrot.github.io/triplet-loss

        Requirements:
            1. Each sentence must be labeled with a class.
            2. Your dataset must contain at least 2 examples per labels class.
            3. Your dataset should contain hard positives and negatives.

        Inputs:
            +------------------+--------+
            | Texts            | Labels |
            +==================+========+
            | single sentences | class  |
            +------------------+--------+

        Recommendations:
            - Use ``BatchSamplers.GROUP_BY_LABEL`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to
              ensure that each batch contains 2+ examples per label class.

        Relations:
            * :class:`BatchHardTripletLoss` uses a user-specified margin, while this loss does not require setting a margin.

        Example:
            ::

                from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses
                from datasets import Dataset

                model = SentenceTransformer("microsoft/mpnet-base")
                # E.g. 0: sports, 1: economy, 2: politics
                train_dataset = Dataset.from_dict({
                    "sentence": [
                        "He played a great game.",
                        "The stock is up 20%",
                        "They won 2-1.",
                        "The last goal was amazing.",
                        "They all voted against the bill.",
                    ],
                    "label": [0, 1, 0, 0, 2],
                })
                loss = losses.BatchHardSoftMarginTripletLoss(model)

                trainer = SentenceTransformerTrainer(
                    model=model,
                    train_dataset=train_dataset,
                    loss=loss,
                )
                trainer.train()
        N)super__init__sentence_embedderdistance_metric)selfr   r   	__class__ w/var/www/html/assistant/venv/lib/python3.9/site-packages/sentence_transformers/losses/BatchHardSoftMarginTripletLoss.pyr      s    Jz'BatchHardSoftMarginTripletLoss.__init__zIterable[dict[str, Tensor]]r   )sentence_featureslabelsr   c                 C  s   |  |d d }| ||S )Nr   Zsentence_embedding)r   #batch_hard_triplet_soft_margin_loss)r   r   r   repr   r   r   forward\   s    z&BatchHardSoftMarginTripletLoss.forward)r   
embeddingsr   c                 C  s   |  |}t| }|| }|jddd\}}t| }|jddd\}	}||	d|   }
|
jddd\}}tt	|| }|
 }|S )a6  Build the triplet loss over a batch of embeddings.
        For each anchor, we get the hardest positive and hardest negative to form a triplet.
        Args:
            labels: labels of the batch, of size (batch_size,)
            embeddings: tensor of shape (batch_size, embed_dim)
            squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
                     If false, output is the pairwise euclidean distance matrix.
        Returns:
            Label_Sentence_Triplet: scalar tensor containing the triplet loss
        r   T)Zkeepdimg      ?)r   r   Z get_anchor_positive_triplet_maskfloatmaxZ get_anchor_negative_triplet_maskmintorchlog1pexpmean)r   r   r   Zpairwise_distZmask_anchor_positiveZanchor_positive_distZhardest_positive_dist_Zmask_anchor_negativeZmax_anchor_negative_distZanchor_negative_distZhardest_negative_disttlZtriplet_lossr   r   r   r   b   s    
zBBatchHardSoftMarginTripletLoss.batch_hard_triplet_soft_margin_lossstr)r   c                 C  s   dS )Na  
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
r   )r   r   r   r   citation   s    z'BatchHardSoftMarginTripletLoss.citation)__name__
__module____qualname__r   Zeucledian_distancer   r   r   propertyr&   __classcell__r   r   r   r   r	      s   N+r	   )
__future__r   collections.abcr   r   r   Z)sentence_transformers.SentenceTransformerr   r   r   r	   r   r   r   r   <module>   s   