a
    yÀh¿  ã                   @  st   d dl mZ d dlmZ d dlmZmZ dd„ Zdddœdd	„Zdddœd
d„Z	dddœdd„Z
dddœdd„ZdS )é    )Úannotations)Úconv_sequences)Úis_noneÚsetupPandasc                 C  s¸  t t| ƒt|ƒƒd }i }|j}t|ƒd }|g| }|g| }tt|ƒƒ}||d< tdt| ƒd ƒD ]B}	|| }}d}
|d }|	|d< |}tdt|ƒd ƒD ]ø}||d  | |	d  ||d  k }||d  d }|| d }t|||ƒ}| |	d  ||d  kr$|}
||d  ||< |}nd|||d  dƒ}|
}|| dkrd|| |	|  }t||ƒ}n$|	| dkrˆ|||  }t||ƒ}|| }|||< q |	|| |	d  < qf|t|ƒ S )Né   é   éÿÿÿÿr   )ÚmaxÚlenÚgetÚlistÚrangeÚmin)Ús1Ús2ZmaxValZlast_row_idZlast_row_id_getÚsizeZFRZR1ÚRÚiZlast_col_idZ	last_i2l1ÚTÚjZdiagÚleftÚupÚtempÚkÚlZ	transpose© r   úd/var/www/html/assistant/venv/lib/python3.9/site-packages/rapidfuzz/distance/DamerauLevenshtein_py.pyÚ"_damerau_levenshtein_distance_zhao	   sF    


$

r   N)Ú	processorÚscore_cutoffc                C  sL   |dur|| ƒ} ||ƒ}t | |ƒ\} }t| |ƒ}|du s@||krD|S |d S )a«  
    Calculates the Damerau-Levenshtein distance.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the distance is bigger than score_cutoff,
        score_cutoff + 1 is returned instead. Default is None, which deactivates
        this behaviour.

    Returns
    -------
    distance : int
        distance between s1 and s2

    Examples
    --------
    Find the Damerau-Levenshtein distance between two strings:

    >>> from rapidfuzz.distance import DamerauLevenshtein
    >>> DamerauLevenshtein.distance("CA", "ABC")
    2
    Nr   )r   r   )r   r   r   r   Údistr   r   r   Údistance7   s    &
r!   c                C  sb   |dur|| ƒ} ||ƒ}t | |ƒ\} }tt| ƒt|ƒƒ}t| |ƒ}|| }|du sZ||kr^|S dS )a*  
    Calculates the Damerau-Levenshtein similarity in the range [max, 0].

    This is calculated as ``max(len1, len2) - distance``.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the similarity is smaller than score_cutoff,
        0 is returned instead. Default is None, which deactivates
        this behaviour.

    Returns
    -------
    similarity : int
        similarity between s1 and s2
    Nr   )r   r	   r
   r!   )r   r   r   r   Úmaximumr    Úsimr   r   r   Ú
similarityf   s     
r$   c                C  s„   t ƒ  t| ƒst|ƒrdS |dur2|| ƒ} ||ƒ}t| |ƒ\} }tt| ƒt|ƒƒ}t| |ƒ}|rh|| nd}|du s|||kr€|S dS )a@  
    Calculates a normalized Damerau-Levenshtein distance in the range [1, 0].

    This is calculated as ``distance / max(len1, len2)``.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_dist > score_cutoff 1.0 is returned instead. Default is 1.0,
        which deactivates this behaviour.

    Returns
    -------
    norm_dist : float
        normalized distance between s1 and s2 as a float between 0 and 1.0
    ç      ð?Nr   r   )r   r   r   r	   r
   r!   )r   r   r   r   r"   r    Ú	norm_distr   r   r   Únormalized_distance‘   s    
r'   c                C  sj   t ƒ  t| ƒst|ƒrdS |dur2|| ƒ} ||ƒ}t| |ƒ\} }t| |ƒ}d| }|du sb||krf|S dS )a:  
    Calculates a normalized Damerau-Levenshtein similarity in the range [0, 1].

    This is calculated as ``1 - normalized_distance``

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_sim < score_cutoff 0 is returned instead. Default is 0,
        which deactivates this behaviour.

    Returns
    -------
    norm_sim : float
        normalized similarity between s1 and s2 as a float between 0 and 1.0
    g        Nr%   r   )r   r   r   r'   )r   r   r   r   r&   Znorm_simr   r   r   Únormalized_similarity¿   s    
r(   )Ú
__future__r   Zrapidfuzz._common_pyr   Zrapidfuzz._utilsr   r   r   r!   r$   r'   r(   r   r   r   r   Ú<module>   s   2û3û/û2û